Investigation of the Wear Corrosion and Hot Corrosion Properties of Alumina Coating Applied on Steel Substrate via High Velocity Oxy-Fuel Method
Subject Areas :seyed Ali Khosravifard 1 * , Amirhosein Yaghtin 2 , Amin Akhbarizadeh 3 , Alireza Araghi 4
1 - استادیار، گروه مهندسی متالورژی و مواد، دانشکده مهندسی شیمی و مواد، واحد شیراز، دانشگاه آزاد اسلامی
2 - استادیار، گروه مهندسی متالورژی و مواد، دانشکده مهندسی شیمی و مواد، واحد شیراز، دانشگاه آزاد اسلامی
3 - دکترا، گروه مهندسی متالورژی و مواد، دانشکده مهندسی شیمی و مواد، واحد شیراز، دانشگاه آزاد اسلامی
4 - دانشجوی دکترا، گروه مهندسی متالورژی و مواد، دانشکده مهندسی شیمی و مواد، واحد شیراز، دانشگاه آزاد اسلامی
Keywords: Alumina, thermal barrier coating, Wear Corrosion, hot Corrosion,
Abstract :
In the present work, Alumina coating with an approximate thickness of 240 µm was applied via high velocity oxy-fuel (HVOF) method on a 4340 hot-work tool steel substrate. The morphology of the coating and the influences of the corrosive medium which contained hydro-chloric acid (5-15 vol.%) were studied using scanning electron microscope (SEM). Afterwards, the wear behavior of the coatings in dry and acidic wet environments were studied using a pin-on-disk wear apparatus and the wear mechanism was analyzed through SEM studies. The results of the wear tests showed that the wear rate in the 5% acidic medium was approximately the same as that of the dry test. Furthermore, the results showed that increasing the concentration of acid in the wear medium (up to 15%), leads to a continuous increase of the wear rate which was ascribed to increased corrosion rate. The dominant wear mechanism in all the tested situations was determined as sticking wear. As the wear rate increased, the wear surfaces showed increased roughness. Finally, hot corrosion experiments were carried on the coated specimens at the temperature of 880 ˚C. At this condition, the coating lasted for about 460 hours.
[1] ا. اخباری زاده، ع. عراقی، م. ح. پایدار، "بررسی رفتار خوردگی پوشش ها و آستری های مختلف مورد استفاده برای لوله های انتقال در صنعت آب کشور"، فصنامه فرایندهای نوین در مهندسی مواد، دوره 9، شماره 2، صفحه 77-90، 1394.
[2] S. Bose, “High temperature coatings”, Elsevier, 2007.
[3] R. Sivakumar & B. L. Mordike, “High temperature coatings for gas turbine blades: A Review”, Surface and Coatings Technology, Vol. 37, pp. 139 – 160, 1998.
[4] م. علیشاهی، م. ح. بینا، س. م. منیرواقفی، "تشکیل و بررسی اثر درصد CNT بر رفتار خوردگی پوشش الکترولس کامپوزیتی Ni-P-CNT"، فصلنامه فرایندهای نوین در مهندسی مواد، دوره 7، شماره 3، صفحه 31-38، 1392.
[5] G. W. Goward, “Progress in coatings for gas turbine airfoils,” Surface and Coatings Technology, Vol. 108–109, pp. 73-79, 1998.
[6] M. J. Pomeroy, “Coatings for gas turbine Materials and long terms stability issues”, Materials and Design, Vol. 26, pp. 223-231, 2005.
[7] S. Sharafat, A. Kobayashi, Y. Chen & N. M. Ghoniem, “Plasma spraying of micro-composite thermal barrier coatings,” Vacuum, Vol. 65, pp. 415-425. 2002.
[8] U. Schulz, O. Bernardi, A. Ebach-Stahl, R. Vassen & D. Sebold, “Improvement of EB-PVD thermal barrier coatings by treatments of a vacuum plasma-sprayed bond coat,” Surface and Coatings Technology, Vol. 203, pp. 160-170, 2008.
[9] V. K. Tolpygo & D. R. Clarke, “The effect of oxidation pre-treatment on the cyclic life of EB-PVD thermal barrier coatings with platinum–aluminide bond coats,” Surface and Coatings Technology, Vol. 200, pp. 1276-1281, 2005.
[10] M. Hetmańczyk, L. Swadźba & B. Mendala, “Advanced materials and protective coatings in aero-engines application”, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 24, pp. 372-381, 2007.
[11] Valarezo, W. B. Choi, W. Chi, A. Gouldstone & S. Sampath, “Process control and characterization of NiCr coatings by HVOF-DJ2700 system: a process map approach”, Journal of thermal spray technology, Vol. 19, pp. 852-865, 2010.
[12] Bhushan & B. K. Gupta, “Handbook of Tribology: Material Coating and Surface Treatments”, McGraw-Hill, New York, 1991.
[13] AWS, “Thermal Spraying: Practice, Theory and Application”, American Welding Society, 1995.
[14] J. Wigren, L. Pejryd, “Thermal barrier coatings-why, how, where and where to”, Proceedings of 15th International Thermal Spray Conference, Edited by Coddet, Nice, France, pp. 1531-1542, 1998.
[15] Y. H. Sohna, E. Y. Lee, B. A. Nagaraj, R. R. Biedermand & Jr. R. D. Sisson, “Microstructural characterization of thermal barrier coatings on high pressure turbine blades,” Surface and Coatings Technology, Vol. 146-147, pp. 132-139, 2001.
[16] E. Lugscheider, C. Herbst & L. Zhao, “Parameter studies on HVOF spraying of MCrAlY coatings,” Surface and Coatings Technology, Vol. 108-109, pp. 16-23, 2003.
[17] Y. Liu, T. E. Fischer & A. Dent, “Comparison of HVOF and plasma-sprayed alumina/titania coatings—microstructure”, mechanical properties and abrasion behavior, Surface and Coatings Technology, Vol. 167, pp. 68-76, 2003.
[18] E. Turunen, T. Varis, T. E. Gustafsson, J. Keskinen, T. Fält & S. P. Hannula, “Parameter optimization of HVOF sprayed nanostructured alumina and alumina–nickel compositecoatings”, Surface and Coatings Technology, Vol. 200, pp. 4987-4994, 2006.