Characterization, biological evaluation, and investigation of antibacterial properties of strontium-modified silicate-based bioactive glass in the presence of high amounts of magnesium
Subject Areas :Niloufar Kolivand 1 , Reza Ahmadi 2 , Amirhossein Moghanian 3 , Morteza Saghafiyazdi 4
1 - Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
2 -
3 - Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
4 -
Keywords: Silicate-based bioactive glass, Hydroxyapatite, In vitro, Strontium, Magnesium,
Abstract :
In this research, silicate-based bioactive glasses modified with strontium oxide based on 60SiO2-(36-x)CaO-4P2O5-5SrO-(8,10)MgO (molar percentage) were synthesized by sol-gel method and the bioactive properties their in vitro properties were investigated by characterization tests, biological evaluations and antibacterial tests against Mrsa bacteria (MRSA). According to the results of X-ray fluorescence spectroscopy (XRF), the amount of change in the amount of elements on average before and after synthesis, for SBG8M and SBG10M samples was equal to 6.202±4.08% and 4.99±2.66%, respectively, which indicates a negligible effect the synthesis process is based on the final chemical composition of the samples. Also, according to the X-ray diffraction (XRD) results, the characteristic peaks of hydroxyapatite (HA) were observed only in the SBG8M sample after 14 days of immersion in the simulated body solution (SBF), which Scanning electron microscopy (SEM) was also confirmed. Besides, according to the results of biological evaluations, increasing the amount of magnesium oxide from 8 to 10 mol percent, led to a decrease of 6.74%, 4.87%, and 17.65% in the amount of optical density (OD) and also a decrease of 9.93%, 12.16% and 24.30% in alkaline phosphatase (ALP) activity on days 1, 3 and 7 respectively of culture in vitro culture medium. In addition, increasing the amount of magnesium oxide led to a decrease of 18.53% in antibacterial properties. Therefore, the presence of high amounts of 8 and 10 mol percent magnesium oxide in the chemical composition of bioactive glasses leads to a decrease in their in vitro bioactivity and antibacterial properties.
[1] Q. Wu, L. Hu, R Yan & et al. "Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration", Bone Res, vol. 10, p. 55, 2022.
[2] E. Rezabeigi, P. M. Wood-Adams & R. A. Drew, "Synthesis of 45S5 Bioglass® via a straightforward organic, nitrate-free sol–gel process", Materials Science and Engineering: C, vol. 40, pp. 248-252, 2014.
[3] L. L. Hench & J. R. Jones, "Bioactive Glasses: Frontiers and Challenges", Bioeng. Biotechnol, Vol. 3, pp. 1-12, 2015.
[4] D. S. Brauer, "Bioactive Glasses—Structure and Properties", Angew. Chemi – Int. ed, vol. 54, pp. 4160-4181, 2015.
[5] M. Ruslan, Ch. Kang, G. Shen & F. Fang, "Study on Surface Roughness Generated by Micro-Blasting on Co-Cr-Mo Bio-Implant", Wear, vol. 428–429, pp. 111–26, 2019.
[6] Q. Nawaz, M. A. Ur Rehman, J. A. Roether, L. Yufei, A. Grünewald, R. Detsch & A. R. Boccaccini, "Bioactive glass based scaffolds incorporating gelatin/manganese doped mesoporous bioactive glass nanoparticle coating", Ceramics International, vol. 45, pp. 14608-14613. 2019.
[7] R. G. Ribas, V. M. Schatkoski, T. L. Do Amaral Montanheiro, B. R. C. De Menezes, C. Stegemann, D. M. G. Leite & G. P. Thim, "Current Advances in Bone Tissue Engineering Concerning Ceramic and Bioglass Scaffolds: A Review", Ceramics International, vol. 45, pp. 21051–61, 2019.
[8] م. حاجیان، م. محمودی و ر. ایمانی، "ساخت و مشخصهیابی هيدروژل پلیوینيل الكل/ آلوورا با روش ریختهگری حلال جهت كاربرد بهعنوان زخمپوش"، فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 3، صفحه 46-36، 1396.
[9] A. R. Boccaccini, D. S. Brauer & L. Hupa, Editors. "Bioactive glasses (Smart Materials Series)", Cambridge: Royal Society of Chemistry, vol. 3, pp. P001–530, 2016.
[10] J. R. Jones, "Review of bioactive glass: from hench to hybrids", Acta Biomater, vol. 9, pp. 4457–86, 2013.
[11] J. J. Kim, A. El-Fiqi & H. W. Kim, "Synergetic cues of bioactive nanoparticles and nanofibrous structure in bone scaffolds to sti- mulate osteogenesis and angiogenesis", ACS Appl Mater Inter- faces, vol. 9, pp. 2059–73, 2017.
[12] L. Yan, H. Li & W. Xia, "Bioglass could increase cell membrane fluidity with ion products to develop its bioactivity", Cell Prolif, vol. 53, pp. 1–16, 2020.
[13] S. Saha, A. Bhattacharjee, S. H. Rahaman, S. Ray, M. K. Marei, H. Jain & et al, "Prospects of antibacterial bioactive glass nanofibers for wound healing: an in vitro study", Int J Appl Glas Sci, vol. 11, pp.320–8, 2020.
[14] L. L. Dai, M. L. Mei, C. H. Chu & E.C. M. Lo, "Antibacterial effect of a new bioactive glass on cariogenic bacteria", Arch Oral Biol, vol. 117, p. 104833, 2020.
[15] K. Zheng, X. Dai, M. Lu, N. Hüser, N. Taccardi & A. R. Boccaccini, "Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications", Colloids Surf B Biointerfaces, vol. 150, pp. 159–67, 2017.
[16] S. Kargozar, M. Montazerian, S. Hamzehlou, H. W. Kim & F. Baino, "Mesoporous bioactive glasses (MBGs): promising platforms for antibacterial strategies Saeid", Acta Biomater, vol. 81, pp. 1–19, 2018.
[17] S. Majumdar, S. K. Hira, H. Tripathi, A. S. Kumar, P. P. Manna, S. P. Singh & et al, "Synthesis and characterization of barium-doped bioactive glass with potential anti-inflammatory activity", Ceram Int, vol. 47, pp. 7143–58, 2021.
[18] R. Björkenheim, E. Jämsen, E. Eriksson, P. Uppstu, L. Aalto-Setälä, L. Hupa & et al, "Sintered S53P4 bioactive glass scaffolds have anti- inflammatory properties and stimulate osteogenesis in vitro", Eur Cells Mater, vol. 41, pp. 15–30, 2021.
[19] S. Kargozar, F. Baino, S. Hamzehlou, R. G. Hill & M. Mozafari, "Bioactive glasses: sprouting angiogenesis in tissue engineering", Trends Biotechnol, vol. 36, pp. 430–44, 2018.
[20] V. Miguez-Pacheco, L. L. Hench & A. R. Boccaccini, "Bioactive glas- ses beyond bone and teeth: emerging applications in contact with soft tissues", Acta Biomater, vol. 13, pp. 1–15, 2015.
[21] ا. بیغم، س. ع. حسنزاده تبریزی، م. رفیعینیا و ح. صالحی، "تولید و مشخصهیابی منیزیم سیلیکات مزوحفره جهت کاربردهای رهایش کنترل شده دارو"، فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 1، صفحه 82-74، 1397.
[22] F. Baino, E. Fiume, M. Miola, F. Leone, B. Onida & E. Verné, "Fe-doped bioactive glass-derived scaffolds produced by sol-gel foaming", Materials Letters, vol. 235, pp. 207-211, 2019.
[23] N. Pajares-Chamorro, J. Shook, N. D. Hammer & X. Chatzistavrou, "Resurrec-tion of antibiotics that methicillin-resistant Staphylococcus aureus resists by sil-ver- doped bioactive glass-ceramic microparticles", Acta Biomaterialia, vol. 96, pp. 537-546, 2019.
[24] م. خورسندقاینی، ع. صادقی اول شهر، س. نوخاسته، ا. م. مولوی و ح. امینی مشهدی، "بررسی خصوصیات حرارتی کامپوزیت پلی الکتیک اسید با ذرات شیشه زیستفعال 45S5 و هیدروکسیآپاتیت (HA) بهمنظور استفاده در پیچهای تداخلی قابل جذب"، فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 4، صفحه 65-56، 1396.
[25] L. L. Hench, R. J. Splinter, W. C. Allen & T. K. Greenlee, "Bonding mechanisms at the interface of ceramic prosthetic materials", Biomed Mater Res. vol. 5, pp. 117–41, 1971.
[26] F. Sharifianjazi, N. Parvin & M. Tahriri, "Synthesis and characteristics of sol- gel bioactive SiO2-P2O5-CaO-Ag2O glasses". Non-Crystalline Solids, vol. 476, pp. 108-113, 2017.
[27] F. Sharifianjazi, N. Parvin & M. Tahriri, "Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses". Ceramics Inter- na-tional, vol. 43, pp. 15214-15220, 2017.
[28] ع. شافعی و س. شیبانی، "تأثیر حضور آب، بنزیل الکل و درصد CNT بر روی خواص نانوکامپوزیت CNT-TiO2 تولید شده به روش سل-ژل درجا"، فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 3، صفحه 159-150، 1397.
[29] A. Pal, P. Nasker, S. Paul, A. R. Chowdhury,
A. Sinha & M. Das, "Strontium Doped Hydroxyapatite from Mercenaria Clam Shells: Synthesis, Mechanical and Bioactivity Study", mechanical behavior of biomedical materials, vol. 90, pp. 328–36, 2019.
[30] T. Mehrabi, A. S. Mesgar & Z. Mohammadi, "Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomater". Sci. Eng. vol. 6, pp. 5399-5430, 2020.
[31] A. Houaoui, I. Lyyra, R. Agniel, E. Pauthe, J. Massera & M. Boissière, "Dissolution, bioactivity and osteogenic properties of composites based on polymer and silicate or borosilicate bioactive glass", Mater Sci Eng C, vol. 107, p. 110340, 2020.
[32] R. Moonesi Rad, D. Atila, Z. Evis, D. Keskin & A. Tezcaner, "Development of a novel functionally graded membrane con- taining boron-modified bioactive glass nanoparticles for guided bone regeneration", Tissue Eng Regen Med, vol. 13, pp. 1331–45, 2019.
[33] L. Xia, W. Ma, Y. Zhou, Z. Gui, A. Yao, D. Wang & et al. "Stimulatory effects of boron containing bioactive glass on osteogenesis and angiogenesis of polycaprolactone: in vitro study", Biomed Res Int, vol. 2019, p. 8961409, 2019.
[34] S. S. Prasad, S. Datta, T. Adarsh, P. Diwan, K. Annapurna, B. Kundu & et al. "Effect of boron oxide addition on structural, thermal, in vitro bioactivity and antibacterial properties of bioactive glasses in the base S53P4 composition", Non Cryst Solids, vol. 498, pp. 204–15, 2018.
[35] S. Gomes, C. Vichery, S. Descamps, H. Martinez, A. Kaur, A. Jacobs, J. M. Nedelec & G. Renaudin, "Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity", Acta Biomater, vol. 65, pp. 462–474, 2018.
[36] S. Chen, M. Michálek, D. Galusková, M. Michálková, P. Švancárek, A. Talimian & et al. "Multi-targeted B and Co co-doped 45S5 bioactive glasses with angiogenic potential for bone regenera- tion", Mater Sci Eng C, vol. 112, p. 110909, 2020.
[37] L. A. Haro Durand, G. E. Vargas, N. M. Romero, R. Vera-Mesones, J. M. Porto-López, A. R. Boccaccini & et al. "Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass", Mater Chem B, vol. 3, pp. 1142–8, 2015.
[38] E. O’Neill, G. Awale, L. Daneshmandi, O. Umerah & K. W. H. Lo, "The roles of ions on bone regeneration", Drug Disco Today, vol. 23, pp. 879–90, 2018.
[39] Z. Goudarzi, A. Ijadi, A. Bakhtiari, S. Eskandarinezhad, N. Azizabadi & M. Asgari Jazi, "Sr-doped bioactive glasses for biological applications", Composites and Compounds, vol. 2, pp. 105-109, 2020.
[40] J. M. Tainioa, D. A. AvilaSalazar, A. Nommeots-Nomma, Roilandc, Bureauc, D. R. Neuvilled, D. S.Brauer & J. Masseraa, "Structure and in vitro dissolution of Mg and Sr containing borosilicate bioactive glasses for bone tissue engineering", Non-CrystallineSolids, vol. 533, p. 119893, 2020.
[41] D. Bellucci, A. Sola, R. Salvatori, A. Anesi, Lu. Chiarini & V. Cannillo, "Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity", Materials Science and Engineering: C, vol. 72, pp. 566-575, 2017.
[42] Ö. Demir-Oğuz, A. R. Boccaccini & D. Loca, "Injectable bone cements: What benefits the combination of calcium phosphates and bioactive glasses could bring?", Bioactive Materials, vol. 19, pp. 217-236, 2023.
[43] M. Jiménez, C. Abradelo, J. San Román & L. Rojo, "Bibliographic review on the state of the art of strontium and zinc based regenerative therapies. Recent developments and clinical applications", Materials Chemistry B. vol. 7, pp. 1974–1985, 2019.
[44] F. Sharifianjazi, N. Parvin & M. R. Tahriri, "Formation of Apatite Nano-Needles on Novel Gel Derived SiO2-P2O5-CaO-SrO-Ag2O Bioactive Glasses", Ceramics International, vol. 43, pp. 15214–20, 2017.
[45] R. L. Doiphode, N. Murty Svs, N. Prabhu & B. P. Kashyap, "Effects of Caliber Rolling on Microstructure and Room Temperature Tensile Properties of Mg-3Al-1Zn Alloy", Magnesium and Alloys, vol. 1, pp. 169–75, 2013.
[46] T. Kokubo & H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity", Biomaterials, vol. 27, pp. 2907–2915, 2006.
[47] J. Ma, C. Z. Chen, D. G. Wang, X. G. Meng & J. Z. Shi, "Influence of the sintering temperature on the structural feature and bioactivity of sol–gel derived SiO2–CaO–P2O5 bioglass", Ceramics International, vol. 36, pp. 1911–1916, 2010.
[48] A. Balamurugan, G. Balossier, J. Michel, S. Kannan, H. Benhayoune, A. H. S. Rebelo & J. M. F. Ferreira, "Sol–gel derived SiO2–CaO–MgO–P2O5 bioglass system—preparation and in vitro characterization", Biomed. Mater. Res. B Appl. Biomater, vol. 83, pp. 546–553, 2007.
[49] J. Ma, C. Z. Chen, D. G. Wang, Y. Jiao & J. Z. Shi, "Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses", Colloids and Surfaces B: Biointerfaces, vol. 81.1, pp. 87–95, 2010.
[50] A. Saboori, M. Rabiee, F. Moztarzadeh, M. Sheikhi, M. Tahriri & M. Karimi, "Sol-Gel Preparation, Characterisation and in Vitro Bioactivity of Mg Containing Bioactive Glass", Advances in Applied Ceramics: Structural, Functional and Bioceramics, vol. 108, p. 155, 2009.