On the use of Response Surface Methodology for Optimization of Scaffold Composite of the Hydroxyapatite and Diopside
Subject Areas :Nasrin Rafiee 1 , Saeid Karbasi 2 , amirabas nourbakhsh 3 , kamran amini 4
1 - Department of Materials Science and Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
2 - Department of Biomaterials and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 - depCenter for Advanced Engineering Research, Majlesi Branch, Islamic Azad University, Isfahan, Iranartment
4 - Majlesi Branch, Islamic Azad University
Keywords: response surface methodology, scaffold, Diopside, hydroxyapatite, Central composite design, Tissue Engineering,
Abstract :
The response surface methodology is a statistical approach to design the experiments, modeling and analysis of the effective factors as well as to help optimizing the process. In this study, we use the central composite design technique to select the optimum scaffold composite of the Hydroxyapatite and Diopside. This method suggested twenty different scaffold specimens by optimizing the suitable percentage of porosity via determining the percentage weight concentrations of the three effective parameters. After making the scaffold and determining their porosity, the optimum case for composite scaffolds was 77.57 wt% nHA (22.43wt% Di), 0.64wt% lubricant (STPP) and heat treatment temperature 1200. Also, the results of SEM, FTIR, and XRD confirm that the scaffold specimen made with the response method is an ideal specimen for use in bone tissue engineering. In general, according to the results of this research, the response surface methodology can be a useful tool for optimizing composite scaffolds in tissue engineering.
[1] W. Suchanek & M. Yoshimura, "Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants", Journal of Materials Research, vol. 13, no. 1, pp. 94-117, 1998.
[2] S, Teixeira, M. Rodriguez, P. Pena, A. De Aza, S. De Aza, M. Ferraz & F. Monteiro, "Physical characterization of hydroxyapatite porous scaffolds for tissue engineering", Materials Science and Engineering: C, vol. 29, no. 5, pp. 1510-1514, 2009.
[3] ن. رفیعی و ا. کرمیان، "بررسی زیست فعالی نانو کامپوزیت آپاتیت طبیعی- دیوپساید متراکم سازی شده به روش زینترینگ دومرحلهای جهت مصارف پزشکی"، فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 2، ۱۳۹۵.
[4] T. Nonami, "Developmental study of diopside for use as implant material", MRS Online Proceedings Library Archive, vol. 252, 1991.
[5] M. Fathi & M. Kharaziha, "Mechanochemical synthesis and characterization of nanostructure forsterite bioceramics", International Journal of Modern Physics B, vol. 22, no. 18,19, pp. 3082-3091, 2008.
[6] X. Ren, Q. Tuo, K. Tian, G. Huang, J. Li, T. Xu, X. Lv, J. Wu, Z. Chen & J. Weng, "Enhancement of osteogenesis using a novel porous hydroxyapatite scaffold in vivo and vitro", Ceramics International, vol. 44, no. 17, pp. 21656-21665, 2018.
[7] س. راهوی، ا. منشی، ر.ا. عمادی و م. فتحی، "بررسی و مشخصه یابی هیدروکسی آپاتیت نانوکریستال مشتق از استخوان انسان"، اولین همایش ملی نانومواد و نانو تکنولوژی، شاهرود، سیویلیکا، دانشگاه آزاد اسلامی واحد شاهرود، ۱۳۹۰.
[8] M. Zhang, C. Liu, J. Sun & X. Zhang, "Hydroxyapatite/diopside ceramic composites and their behaviour in simulated body fluid", Ceramics International, vol. 37, no. 6, pp. 2025-2029, 2011.
[9] S. Sadeghzade & R. Emadi, "Improving the mechanical and bioactivity of hydroxyapatite porous scaffold ceramic with diopside/forstrite ceramic coating", Nanomedicine Journal, vol. 6, no. 1, pp. 50-54, 2019.
[10] م. فروغی، ب.ن. تبریزی، س. کرباسی و ر. ابراهیمی کهریزسنگی، "مقایسه ساختاری هیدروکسی آپاتیت نانو کریستال طبیعی و سنتز شده". هفدهمین کنفرانس مهندسی پزشکی ایران، اصفهان، انجمن مهندسی پزشکی ایران، دانشگاه علوم پزشکی اصفهان، ۱۳۸۹.
[11] A. Kazemi, M. Abdellahi, A. Khajeh-Sharafabadi, A, Khandan & N. Ozada, "Study of in vitro bioactivity and mechanical properties of diopside nano-bioceramic synthesized by a facile method using eggshell as raw material", Materials Science and Engineering: C, vol. 71 pp. 604-610, 2017.
[12] T. Nonami, "In vivo and in vitro testing of diopside for biomaterial", Journal of the Society of Materials Engineering for Resources of Japan, vol. 8, no. 2, pp. 12-18, 1996.
[13] R. Hodgskinson & J. Currey, "The effect of variation in structure on the Young's modulus of cancellous bone: a comparison of human and non-human material", Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 204, no, 2, pp. 115-121, 1990.
[14] H. R. Ramay & M. Zhang, "Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods", Biomaterials, vol. 24, no. 19, pp. 3293-3302, 2003.
[15] E. Saiz, L. Gremillard, G. Menendez, P. Miranda, K. Gryn A. P. Tomsia, "Preparation of porous hydroxyapatite scaffolds", Materials Science and Engineering: C, vol. 27, no. 3, pp. 546-550, 2007.
[16] F. Scalera, F. Gervaso, K. Sanosh, A. Sannino & A. Licciulli, "Influence of the calcination temperature on morphological and mechanical properties of highly porous hydroxyapatite scaffolds", Ceramics International, vol. 39, no. 5, pp. 4839-4846, 2013.
[17] J. Ko, N. K. Mohtaram, F. Ahmed, A. Montgomery, M. Carlson, P. C. Lee, S. M. Willerth & M. B. Jun, "Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications", Journal of Biomaterials Science, Polymer Edition, vol. 25, no. 1, pp. 1-17, 2014.
_||_