Correlation of Microstructure with Mechanical Behavior of HSLA-100 Weld Metal Produced By GTAW Method
Subject Areas :Mahyar Darivandpour 1 , Reza Dehmolaei 2 * , Khalil Ranjbar 3
1 - Ph.D. Student, Department of Material Science & Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 - Assistant professor, Department of Material Science & Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 - Professor, Department of Material Science & Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Keywords: HSLA, 100 Steel Microstructure Weld Metal Mechanical Properties Acicular Ferrite M/A Constituents,
Abstract :
In this study, welding of high strength low alloy steel, HSLA-100 was performed using three fillers metals, cut from base metal (HSLA-100), ER100S-G and ER120S-G by GTAW procedure. Microstructural studies were conducted using optical and scanning electron microscopes. Tensile, impact and hardness tests were also used to evaluate the mechanical properties of the joint. The results showed that the microstructure of HSLA-100 weld metal included granular bainite and polygonal ferrite, ER100S-G weld metal consisted of acicular, Widmannstatten and grain boundary ferrites and ER120S-G weld metal comprised of acicular, polygonal and quasi-polygonal ferrites. Furthermore, the formation of a secondary phase (constituent) of martensite / austenite (M / A) was observed in the microstructure of all weld metals. The predominant form of this phase in HSLA-100 and ER100S-G weld metals was blocky type and formed along the prior austenite grain boundries and in ER120S-G weld metal was in the form of stringer type. The results of mechanical tests demonstrated that among weld metals, ER120S-G weld metal had the highest tensile strength (859 MPa), percent elongation (22%), impact toughness (45 joule) and hardness (294.7 HV30). whilst, the ER100S-G weld metal had the lowest tensile strength (775 MPa) and hardness (268.4 HV30) and the HSLA-100 weld metal had the lowest impact toughness (25 Joule).
[1] S. K. Dhua, D. Mukerjee & D. S. Sarma, "Effect of cooling rate on the as-quenched microstructure and mechanical properties of HSLA-100 steel plates", Metallurgical and Materials Transactions A, vol. 34, pp. 2493-2504. 2003.
[2] S. K. Dhua, D. Mukerjee & D. S. Sarma, "Influence of tempering on the microstructure and mechanical properties of HSLA-100 steel plates", Metallurgical and Materials Transactions A, vol. 32, pp. 2259-2270, 2001.
[3] S. Das, A. Ghosh, S. Chatterjee & P. R. Rao, "Evolution of microstructure in an ultra-low carbon Cu bearing HSLA forging", Scandinavian journal of metallurgy processes and materials engineering, vol. 31, pp. 272-280, 2002.
[4] X. Li, P. Wu, R. Yang, S. Zhao, S. Zhang, S. Chen, X. Cao & X. Wang, "Nb segregation at prior austenite grain boundaries and defects in high strength low alloy steel during cooling", Materials and Design, vol. 115, pp. 165-169. 2017.
]5[ ش. عباسی، م، اسماعیلیان و ش، آهنگرانی، "تأثیر ریزساختار و بافت کریستالی بر مقاومت به ترک هیدروژنی فولاد HSLA، سرد شده در محیطهای مختلف"، فرآیندهای نوین در مهندسی مواد، دوره 14، صفحه 26-17، 1399.
[6] M. Mujahid, A. K. Lis, C. I. Garcia & A. J. Deardo, "HSLA-100 steels: Influence of aging heat treatment on microstructure and properties", Materials Engineering and Performance, vol. 7, pp. 247-257. 1998.
[7] S. Panwar, D. B. Goel, O. P. Pandey & K. S. Prasad, "Effect of micro alloying on aging of a Cu-bearing HSLA-100(GPT) steel", Bulletin of materials science, vol. 29, pp. 281-292, 2006.
[8] S. Panwar, D. B. Goel, O. P. Pandey & K. S. Prasad, "Aging of a copper bearing HSLA-100 steel", Bulletin of materials science, vol. 26, pp. 441-447. 2003.
[9] V. R. Mattes, "Microstructure and mechanical properties of HSLA-100 steel", Master of science thesis, naval postgraduate school, Monterey, California, 1990.
[10] S. D. Bhole, J. B. Nemade, L. Collins & C. Liu, "Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel", Journal of Materials Processing Technology, vol. 173, pp. 92-100, 2006.
[11] L. Wei & T. W. Nelson, "Influence of heat input on post weld microstructure and mechanical properties of friction stir welded HSLA-65 steel", Materials science & engineering A, vol. 556, pp. 51-59, 2012.
[12] B. K. Show, R. Veerababu, R. Balamuralikrishnan & G. Malakondaiah, "Effect of vanadium and titanium modification on the microstructure and mechanical properties of a micro alloyed HSLA steel", Materials science & engineering A, vol. 527, pp. 1595-1604, 2010.
[13] G. Thewlis, "Classification and quantification of microstructures in steels", Materials science and technology, vol. 20, 2004, pp.143–160.
[14] S. S. Babu, "The mechanism of acicular ferrite in weld deposits", Current Opinion in Solid State and Materials Science, vol. 8, pp. 267-378, 2004.
[15] M. Eroglu, M. Aksoy & N. Orhan, "Effect of coarse initial grain size on microstructure and mechanical properties of weld metal and HAZ of a low carbon steel", Matrials science and engineering A, vol. 269, pp. 59-66, 1999.
[16] X. J. Di, X. An, F. J. Cheng, D. P. Wang, X. J. Gou & Z. K. Xue, "Effect of martensite–austenite constituent on toughness of simulated inter-critically reheated coarse-grained heat-affected zone in X70 pipeline steel", Science and technology of welding and joining, vol. 21,pp. 366-373, 2016.
[17] Y. Li & T. N. Baker, "Effect of morphology of martensite–austenite phase on fracture of weld heat affected zone in vanadium and niobium micro alloyed steels", Materials science and technology. vol. 26, pp.1029-1040, 2010.
[18] A. Lambert-Perlade, A. F. Gorgoues, J. Besson, T. Sturel & A. Pineau "Mechanisms and Modeling of Cleavage Fracturein Simulated Heat-Affected Zone Microstructures of a High-Strength Low Alloy Steel", Metallurgical and materials transactions A, vol. 35, pp. 1039-1053, 2004.
[19] X. L. Wang, Y. T. Tsai, J. R. Yang, Z. Q. Wang, X. C. Li, C. J. Shang & R. D. K. Misra, "Effect of inter pass temperature on the microstructure and mechanical properties of multi-pass weld metal in a 550-MPa-grade offshore engineering steel", Welding in the World, vol. 61, pp. 1155-1168, 2017.
[20] P. L. Harrison & R. A. Farrar, "Influence of oxygen-rich inclusions on the γ α phase transformation in high-strength low-alloy (HSLA) steel weld metals", Journal of Materials Science, vol. 16, pp. 2218-2226, 1981.
]21[ ح. ناصری، ر. دهملایی و خ. رنجبر، " تأثیر لرزش الکترومغناطیس بر تغییرات ریزساختاری و رفتار فرسایش فلز جوش فولاد HSLA-100"، علوم و مهندسی سطح، دوره 14، صفحه 91-79، 1397.
[22] L. Lan, C. Qiu, D. Zhao, X. Gao & L. Du, "Analysis of martensite–austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel", Journal of materials science, vol. 47, pp. 4732-4742, 2012.
[23] N. Adibi & A. R. Ebrahimi, "Study of mechanical properties and microstructural characterization of HSLA-100 GMA welds and GMA-P welds", International conference on manufacturing engineering, Tehran, 2011.
[24] G. Spanos, D. W. Moon, R.W. Fonda, E. S. K. Menon & A. G. Fox, "Microstructural, Compositional, and Micro hardness Variations across a Gas-Metal Arc Weldment Made with an Ultralow-Carbon Consumable", Metallurgical and materials transactions A, vol. 32, pp. 3043-3054, 2001.
[25] S. K. Dhua, D. Mukerjee, D. S. Sarma, "Weldability and Microstructural Aspects of Shielded Metal Arc Welded HSLA-100 Steel Plates", ISIJ International, vol. 42, pp. 290-298, 2002.
[26] American Society for Testing and Materials, "Standard test method for tension testing of metallic materials", ASTM E8, 2016.
[27] American Society for Testing and Materials, "Standard test method for notched bar impact testing of metallic materials", ASTM E23, 2016.
[28] H. J. Jun, J. S. Kang, D. H. Seo, K. B. Kang & C. G. Park, "Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels", Materials science and engineering A, vol. 422, pp.157-162, 2006.
[29] Y. Zhang, H. Zhang. I. Li & W. Liu, "Effect of Heat Input on Microstructure and Toughness of Coarse Grain Heat Affected Zone in Nb Micro alloyed HSLA Steels", journal of iron and steel research, international, vol. 16, pp. 73-80, 2009.
[30] S. Y. Shin, B. Hwang, S. Lee, N. J. Kim & S. S. Ahn, "Correlation of microstructure and charpy impact properties in API X70 and X80 line-pipe steels", Materials Science and Engineering A, vol. 451, pp. 281-289, 2007.
[31] X. L. Wang, H. H. Wang, L. Cheng & K. M Wu, "The formation mechanisms of interlocked microstructures in low-carbon high-strength steel weld metals", materials characterization, vol. 67, pp. 41-51, 2012.
[32] Y. Kang, J. Jang, J. H. Park & C. Lee, "Influence of Ti on non-metallic inclusion formation and acicular ferrite nucleation in high-strength low-alloy steel weld metals", Metals and Materials international, vol. 20, pp. 119-127, 2014.
[33] Y. Shao, C. Liu, Z. Yan, H. Li & Y. Liu, "Formation mechanism and control methods of acicular ferrite in HSLA steels: A review", Journal of materials science and technology, vol. 34, pp. 737-744, 2018.
[34] W. Wang, Y. Shan & K. Yang, "Study of high strength pipeline steels with different microstructures", Materials Science and Engineering A, vol. 502, pp. 38-44, 2009.
[35] H. Sung, S. Y. Shin, W. Cha, K. Oh, S. Lee & N. J. Kim, "Effects of acicular ferrite on charpy impact properties in heat affected zones of oxide-containing API X80 line pipe steels", Materials Science and Engineering A, vol. 528, pp. 3350-3357, 2011.
[36] D. V. Kirana, B. Basub & A. De, "Influence of process variables on weld bead quality in two wire tandem submerged arc welding of HSLA steel", Journal of Materials Processing Technology, vol. 212, pp. 2041-2050, 2012.
[37] T. Yamada, H. Terasaki & Y. U. Komizo, "Relation between inclusion surface and acicular ferrite in low carbon low alloy steel weld", ISIJ International, vol. 49, pp. 1059–1062, 2009.
[38] W. Zhao, Y. Zou, K. Matsuda & Z. Zou, "Corrosion behavior of reheated CGHAZ of X80 pipeline steel in H2S-containing environments", Materials and Design, vol. 99, pp. 44-56, 2016.
[39] Y. M. Kim, S. K. Kim, Y. J. Lim & N. J. Kim, "Effect of Microstructure on the Yield Ratio and
Low Temperature Toughness of Line pipe Steels", ISIJ international, vol. 42, pp. 1571-1577, 2002.
[40] Y. I. Son, Y. K. Lee, K. Park, C. S. Lee & D. H. Shin, "Ultra fine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: microstructure and tensile properties", Acta materialia, vol. 53, pp. 3125-3134, 2005.
[41] A. Lambert-Perlade, A. F. Gorgoues, J. Besson, T. Sturel & A. Pineau, "Mechanisms and Modeling of Cleavage Fracturein Simulated Heat-Affected Zone Microstructures of a High-Strength Low Alloy Steel", Metallurgical and materials transactions A, vol. 35, pp. 1039-1053, 2004.
[42] X. Li, X. Ma, S. V. Subramanian, C. Shang & R. D. K. Misra, "Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa High strength line pipe steel", Materials Science and Engineering A, vol. 616, pp. 141-147, 2014.
[43] E. Bonnevie, G. Ferri`ere, A. Ikhlef, D. Kaplan & J. M. Orain, "Morphological aspects of martensite–austenite constituents in intercritical and coarse grain heat affected zones of structural steels", Materials Science and Engineering A, vol. 385, pp. 352-358, 2004.
[44] L. Lan, C. Qiu D. Zhao, X. Gao & L. Du, "Analysis of martensite-austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel", Journal of materials science, vol. 47, pp. 4732-4742, 2012.
_||_