Investigation of the Effect of Applied Current Density on Wetting Properties of Cerium Oxide Coating Fabricated by Electrochemical Deposition Method
Subject Areas :Navid Ahmadizadeh 1 , Pooria Najafisayar 2 *
1 - M.S. Student, Department of Materials Science & Engineering, School of Engineering, Shiraz University, Shiraz, Iran.
2 - Assistant Prof., Department of Materials Science & Engineering, School of Engineering, Shiraz University, Shiraz, Iran.
Keywords: electrodeposition, Cerium Oxide, Hydrophobicity, Hydrocarbon Adsorption,
Abstract :
In this study, cerium oxide coatings were fabricated by electrochemical deposition method on copper substrates. The effect of applied current density on morphology, crystallographic structure, surface chemistry, surface roughness & wetting property of coatings was investigated by scanning electron microscopy, X-ray diffractometry, Fourier transform infra-red spectroscopy, atomic force microscopy & static water contact angle measurement methods. The results showed that, by increasing the applied current density, cerium oxide coatings become thicker & rougher including more cracks. Also decreasing of applied current density lead to enhanced growth of (002) crystallographic planes & crystallite size in the microstructure of cerium oxide coatings. More hydrophilic cerium oxide coatings were fabricated at higher applied current densities. Although as-deposited cerium oxide coatings were hydrophilic but their behavior changed to hydrophobic as a result of long exposure to atmosphere & hydrocarbon adsorption. The hydrocarbon adsorption was higher in the case of cerium oxide coatings fabricated at higher applied current densities.
[1]Y. Gu et al., "Research progress of biomimetic superhydrophobic surface characteristics, fabrication, & application," Adv. Mech. Eng., vol. 9, no. 12, pp, 1–13, 2017, doi: 10.1177/1687814017746859.
[2]J. Tam, G. Palumbo & U. Erb, "Recent advances in superhydrophobic electrodeposits," Materials (Basel)., vol. 9, no. 3, pp, 1–27, 2016, doi: 10.3390/ma9030151.
[3] ب. بکا، ح. غیور و ف. کریمخانی، "تأثیر ضخامت بذر لایه بر آبگریزی نانومیله های"ZnO ، فرآیندهای نوین در مهندسی مواد، دوره، 9، شماره، 1، ص 221-211، 1394.
[4]G. Azimi, R. Dhiman, H. M. Kwon, A. T. Paxson & K. K. Varanasi, "Hydrophobicity of rare-earth oxide ceramics," Nat. Mater., vol. 12, no. 4, pp, 315–320, 2013, doi: 10.1038/nmat3545.
[5]S. L. Sanjay, B. G. Annaso, S. M. Chavan & S. V. Rajiv, "Recent progress in preparation of superhydrophobic surfaces: a review," J. Surf. Eng. Mater. Adv. Technol., vol. 2, no. April, pp, 76–94, 2012.
[6]K. Nakayama, T. Hiraga, C. Zhu, E. Tsuji, Y. Aoki & H. Habazaki, "Facile preparation of self-healing superhydrophobic CeO 2 surface by electrochemical processes," Appl. Surf. Sci., vol. 423, pp, 968–976, 2017, doi: 10.1016/j.apsusc.2017.07.012.
[7]T. Ishizaki, Y. Masuda & M. Sakamoto, "Corrosion resistance & durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film & fluoroalkylsilane molecules in corrosive NaCl aqueous solution," Langmuir, vol. 27, no. 8, pp, 4780–4788, 2011, doi: 10.1021/la2002783.
[8]A. F. Feil & et al., "Micro & nano-texturization of intermetallic oxide alloys by a single anodization step: Preparation of artificial self-cleaning surfaces," ACS Appl. Mater. Interfaces, vol. 3, no. 10, pp, 3981–3987, 2011, doi: 10.1021/am200854r.
[9]F. Pedraza, S. A. Mahadik & B. Bouchaud, "Synthesis of ceria based superhydrophobic coating on Ni20Cr substrate via cathodic electrodeposition," Phys. Chem. Chem. Phys., vol. 17, no. 47, pp, 31750–31757, 2015, doi: 10.1039/c5cp04723d.
[10]S. Khan, G. Azimi, B. Yildiz & K. K. Varanasi, "Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides," Appl. Phys. Lett., vol. 106, no. 6, 2015, doi: 10.1063/1.4907756.
[11]Y. J. Cho, H. Jang, K. S. Lee & D. R. Kim, "Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity & corrosion resistance," Appl. Surf. Sci., vol. 340, pp, 96–101, 2015, doi: 10.1016/j.apsusc.2015.02.138.
[12]I. K. Oh & et al., "Hydrophobicity of rare earth oxides grown by atomic layer deposition," Chem. Mater., vol. 27, no. 1, pp, 148–156, 2015, doi: 10.1021/cm503659d.
[13] D. J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queeney & E. N. Wang, "Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics," Appl. Phys. Lett., vol. 105, no. 1, pp, 0–5, 2014, doi: 10.1063/1.4886410.
[14]R. Lundy & et al., "Exploring the Role of Adsorption & Surface State on the Hydrophobicity of Rare Earth Oxides," ACS Appl. Mater. Interfaces, vol. 9, no. 15, pp, 13751–13760, 2017, doi: 10.1021/acsami.7b01515.
[15]E. Külah & et al., "Surface chemistry of rare-earth oxide surfaces at ambient conditions: Reactions with water & hydrocarbons," Sci. Rep., vol. 7, no. March, pp, 1–10, 2017, doi: 10.1038/srep43369.
[16]Y. Cai, T. W. Coyle, G. Azimi & J. Mostaghimi, "Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray," Sci. Rep., vol. 6, pp, 1–7, 2016, doi: 10.1038/srep24670.
[17]J. Tam, G. Palumbo, U. Erb & G. Azimi, "Robust Hydrophobic Rare Earth Oxide Composite Electrodeposits," Adv. Mater. Interfaces, vol. 4, no. 24, pp, 1–11, 2017, doi: 10.1002/admi.201700850.
[18]ا. صفائی، "ایجاد آرایـه های نانوکامپوزیتی ZnO/CeO2 درون کانـال های مونولیت لانـه زنبوری کوردیریتی"، فرآیندهای نوین در مهندسی مواد، دوره،10، شماره، 2، ص 175-167، 1395.
[19]C. E. Castano, M. J. O’Keefe & W. G. Fahrenholtz, "Cerium-based oxide coatings," Curr. Opin. Solid State Mater. Sci., vol. 19, no. 2, pp, 69–76, 2015, doi: 10.1016/j.cossms.2014.11.005.
[20]A. Q. Wang & T. D. Golden, "Anodic Electrodeposition of Cerium Oxide Thin Films I. Formation of Crystalline Thin Films," J. Electrochem. Soc., vol. 150, no. 9, pp, 616–620, 2003, doi: 10.1149/1.1596164.
[21]Y. Hamlaoui, L. Tifouti, C. Remazeilles & F. Pedraza, "Cathodic electrodeposition of cerium based oxides on carbon steel from concentrated cerium nitrate. Part II: Influence of electrodeposition parameters & of the addition of PEG," Mater. Chem. Phys., vol. 120, no. 1, pp, 172–180, 2010, doi: 10.1016/j.matchemphys.2009.10.042.
[22]Y. Hamlaoui & et al., "Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions. Part I. Electrochemical & analytical characterisation," Mater. Chem. Phys., vol. 113, no. 2–3, pp, 650–657, 2009, doi: 10.1016/j.matchemphys.2008.08.027.
[23]Y. Zhou & J. A. Switzer, "Growth of cerium(IV) oxide films by the electrochemical generation of base method," J. Alloys Compd., vol. 237, no. 1–2, pp, 1–5, 1996, doi: 10.1016/0925-8388(95)02048-9.
[24]Y. Yang, Y. Yang, X. Du, Y. Chen, Z. Zhang & J. Zhang, "Influences of the main anodic electroplating parameters on cerium oxide films," Appl. Surf. Sci., vol. 305, pp, 330–336, 2014, doi: 10.1016/j.apsusc.2014.03.078.
[25]L. Martínez, E. Román, J. L. De Segovia, S. Poupard, J. Creus & F. Pedraza, "Surface study of cerium oxide based coatings obtained by cathodic electrodeposition on zinc," Appl. Surf. Sci., vol. 257, no. 14, pp, 6202–6207, 2011, doi: 10.1016/j.apsusc.2011.02.033.
[26]L. Yang, X. Pang, G. Fox-Rabinovich, S. Veldhuis, & I. Zhitomirsky, "Electrodeposition of cerium oxide films & composites," Surf. Coatings Technol., vol. 206, no. 1, pp, 1–7, 2011, doi: 10.1016/j.surfcoat.2011.06.029.
[27]B. Bouchaud, J. Balmain, G. Bonnet & F. Pedraza, "Optimizing structural & compositional properties of electrodeposited ceria coatings for enhanced oxidation resistance of a nickel-based superalloy," Appl. Surf. Sci., vol. 268, pp, 218–224, 2013, doi: 10.1016/j.apsusc.2012.12.065.
[28]J. Creus, F. Brezault, C. Rebere & M. Gadouleau, "Synthesis & characterisation of thin cerium oxide coatings elaborated by cathodic electrolytic deposition on steel substrate," Surf. Coatings Technol., vol. 200, no. 14–15, pp, 4636–4645, 2006, doi: 10.1016/j.surfcoat.2005.04.027.
[29]I. Zhitomirsky, "Cathodic electrodeposition of ceramic & organoceramic materials. Fundamental aspects," Advances in Colloid & Interface Science, vol. 97, no. 1–3. pp, 279–317, 2002, doi: 10.1016/S0001-8686(01)00068-9.
[30]A. T. Kuhn & C. Y. Chan, "pH changes at near-electrode surfaces," J. Appl. Electrochem., vol. 13, no. 2, pp, 189–207, 1983, doi: 10.1007/BF00612481.
[31]M. Xue, N. Peng, C. Li, J. Ou, F. Wang & W. Li, "Enhanced superhydrophilicity & thermal stability of ITO surface with patterned ceria coatings," Appl. Surf. Sci., vol. 329, pp, 11–16, 2015, doi: 10.1016/j.apsusc.2014.12.145.
[32]L. Luo & et al., "Investigate interactions of water with mesoporous ceria using in situ VT-DRIFTS," Surf. Sci., vol. 691, no. June 2019, p, 121486, Jan. 2020, doi: 10.1016/j.susc.2019.121486.
[33]G. Carchini, M. García-Melchor, Z. Łodziana & N. López, "Underst&ing & Tuning the Intrinsic Hydrophobicity of Rare-Earth Oxides: A DFT+U Study," ACS Appl. Mater. Interfaces, vol. 8, no. 1, pp, 152–160, 2016, doi: 10.1021/acsami.5b07905.
[34]A. Matin, U. Baig, M. A. Gondal, S. Akhtar & S. M. Zubair, "Superhydrophobic & superoleophilic surfaces prepared by spray-coating of facile synthesized Cerium(IV) oxide nanoparticles for efficient oil/water separation," Appl. Surf. Sci., vol. 462, no. August, pp, 95–104, 2018, doi: 10.1016/j.apsusc.2018.08.104.
[35]V. Sundararajan & et al., "Drosophila melanogaster as an in vivo model to study the potential toxicity of cerium oxide nanoparticles," Appl. Surf. Sci., vol. 490, no. June, pp, 70–80, 2019, doi: 10.1016/j.apsusc.2019.06.017.
[36]E. Nourmohammadi & et al., "Cytotoxic activity of greener synthesis of cerium oxide nanoparticles using carrageenan towards a WEHI 164 cancer cell line," Ceram. Int., vol. 44, no. 16, pp, 19570–19575, 2018, doi: 10.1016/j.ceramint.2018.07.201.
[37]H. M. Marwani, E. M. Bakhsh, S. B. Khan, E. Y. Danish & A. M. Asiri, "Cerium oxide‑cadmium oxide nanomaterial as efficient extractant for yttrium ions," J. Mol. Liq., vol. 269, pp, 252–259, 2018, doi: 10.1016/j.molliq.2018.08.046.
[38]R. Suresh, V. Ponnuswamy & R. Mariappan, "Effect of annealing temperature on the microstructural, optical & electrical properties of CeO 2 nanoparticles by chemical precipitation method," Appl. Surf. Sci., vol. 273, pp, 457–464, 2013, doi: 10.1016/j.apsusc.2013.02.062.
[39]B. H. Solis & et al., "Initial stages of CO2 adsorption on CaO: A combined experimental & computational study," Phys. Chem. Chem. Phys., vol. 19, no. 6, pp, 4231–4242, 2017, doi: 10.1039/c6cp08504k.
[40]Q. Lv & et al., "Transparent & water repellent ceria film grown by atomic layer deposition," Surf. Coatings Technol., vol. 320, pp, 190–195, 2017, doi: 10.1016/j.surfcoat.2017.01.058.
[41]M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani & M. Salavati-Niasari, "Synthesis & characterization of CeO2 nanoparticles via hydrothermal route," J. Ind. Eng. Chem., vol. 21, no. 3, pp, 1301–1305, 2015, doi: 10.1016/j.jiec.2014.05.046.
[42]I. Milenković & et al., "Improving stability of cerium oxide nanoparticles by microbial polysaccharides coating," J. Serbian Chem. Soc., vol. 83, no. 6, pp, 745–757, 2018, doi: 10.2298/JSC171205031M.
[43]S. Prakash & et al., "Intrinsic hydrophilic nature of epitaxial thin-film of rare-earth oxide grown by pulsed laser deposition," Nanoscale, vol. 10, no. 7, pp, 3356–3361, 2018, doi: 10.1039/c7nr06642b.
[44]R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Ind. Eng. Chem., vol. 28, no. 8, pp, 988–994, 1936, doi: 10.1021/ie50320a024.
_||_
[1]Y. Gu et al., "Research progress of biomimetic superhydrophobic surface characteristics, fabrication, & application," Adv. Mech. Eng., vol. 9, no. 12, pp, 1–13, 2017, doi: 10.1177/1687814017746859.
[2]J. Tam, G. Palumbo & U. Erb, "Recent advances in superhydrophobic electrodeposits," Materials (Basel)., vol. 9, no. 3, pp, 1–27, 2016, doi: 10.3390/ma9030151.
[3] ب. بکا، ح. غیور و ف. کریمخانی، "تأثیر ضخامت بذر لایه بر آبگریزی نانومیله های"ZnO ، فرآیندهای نوین در مهندسی مواد، دوره، 9، شماره، 1، ص 221-211، 1394.
[4]G. Azimi, R. Dhiman, H. M. Kwon, A. T. Paxson & K. K. Varanasi, "Hydrophobicity of rare-earth oxide ceramics," Nat. Mater., vol. 12, no. 4, pp, 315–320, 2013, doi: 10.1038/nmat3545.
[5]S. L. Sanjay, B. G. Annaso, S. M. Chavan & S. V. Rajiv, "Recent progress in preparation of superhydrophobic surfaces: a review," J. Surf. Eng. Mater. Adv. Technol., vol. 2, no. April, pp, 76–94, 2012.
[6]K. Nakayama, T. Hiraga, C. Zhu, E. Tsuji, Y. Aoki & H. Habazaki, "Facile preparation of self-healing superhydrophobic CeO 2 surface by electrochemical processes," Appl. Surf. Sci., vol. 423, pp, 968–976, 2017, doi: 10.1016/j.apsusc.2017.07.012.
[7]T. Ishizaki, Y. Masuda & M. Sakamoto, "Corrosion resistance & durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film & fluoroalkylsilane molecules in corrosive NaCl aqueous solution," Langmuir, vol. 27, no. 8, pp, 4780–4788, 2011, doi: 10.1021/la2002783.
[8]A. F. Feil & et al., "Micro & nano-texturization of intermetallic oxide alloys by a single anodization step: Preparation of artificial self-cleaning surfaces," ACS Appl. Mater. Interfaces, vol. 3, no. 10, pp, 3981–3987, 2011, doi: 10.1021/am200854r.
[9]F. Pedraza, S. A. Mahadik & B. Bouchaud, "Synthesis of ceria based superhydrophobic coating on Ni20Cr substrate via cathodic electrodeposition," Phys. Chem. Chem. Phys., vol. 17, no. 47, pp, 31750–31757, 2015, doi: 10.1039/c5cp04723d.
[10]S. Khan, G. Azimi, B. Yildiz & K. K. Varanasi, "Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides," Appl. Phys. Lett., vol. 106, no. 6, 2015, doi: 10.1063/1.4907756.
[11]Y. J. Cho, H. Jang, K. S. Lee & D. R. Kim, "Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity & corrosion resistance," Appl. Surf. Sci., vol. 340, pp, 96–101, 2015, doi: 10.1016/j.apsusc.2015.02.138.
[12]I. K. Oh & et al., "Hydrophobicity of rare earth oxides grown by atomic layer deposition," Chem. Mater., vol. 27, no. 1, pp, 148–156, 2015, doi: 10.1021/cm503659d.
[13] D. J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queeney & E. N. Wang, "Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics," Appl. Phys. Lett., vol. 105, no. 1, pp, 0–5, 2014, doi: 10.1063/1.4886410.
[14]R. Lundy & et al., "Exploring the Role of Adsorption & Surface State on the Hydrophobicity of Rare Earth Oxides," ACS Appl. Mater. Interfaces, vol. 9, no. 15, pp, 13751–13760, 2017, doi: 10.1021/acsami.7b01515.
[15]E. Külah & et al., "Surface chemistry of rare-earth oxide surfaces at ambient conditions: Reactions with water & hydrocarbons," Sci. Rep., vol. 7, no. March, pp, 1–10, 2017, doi: 10.1038/srep43369.
[16]Y. Cai, T. W. Coyle, G. Azimi & J. Mostaghimi, "Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray," Sci. Rep., vol. 6, pp, 1–7, 2016, doi: 10.1038/srep24670.
[17]J. Tam, G. Palumbo, U. Erb & G. Azimi, "Robust Hydrophobic Rare Earth Oxide Composite Electrodeposits," Adv. Mater. Interfaces, vol. 4, no. 24, pp, 1–11, 2017, doi: 10.1002/admi.201700850.
[18]ا. صفائی، "ایجاد آرایـه های نانوکامپوزیتی ZnO/CeO2 درون کانـال های مونولیت لانـه زنبوری کوردیریتی"، فرآیندهای نوین در مهندسی مواد، دوره،10، شماره، 2، ص 175-167، 1395.
[19]C. E. Castano, M. J. O’Keefe & W. G. Fahrenholtz, "Cerium-based oxide coatings," Curr. Opin. Solid State Mater. Sci., vol. 19, no. 2, pp, 69–76, 2015, doi: 10.1016/j.cossms.2014.11.005.
[20]A. Q. Wang & T. D. Golden, "Anodic Electrodeposition of Cerium Oxide Thin Films I. Formation of Crystalline Thin Films," J. Electrochem. Soc., vol. 150, no. 9, pp, 616–620, 2003, doi: 10.1149/1.1596164.
[21]Y. Hamlaoui, L. Tifouti, C. Remazeilles & F. Pedraza, "Cathodic electrodeposition of cerium based oxides on carbon steel from concentrated cerium nitrate. Part II: Influence of electrodeposition parameters & of the addition of PEG," Mater. Chem. Phys., vol. 120, no. 1, pp, 172–180, 2010, doi: 10.1016/j.matchemphys.2009.10.042.
[22]Y. Hamlaoui & et al., "Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions. Part I. Electrochemical & analytical characterisation," Mater. Chem. Phys., vol. 113, no. 2–3, pp, 650–657, 2009, doi: 10.1016/j.matchemphys.2008.08.027.
[23]Y. Zhou & J. A. Switzer, "Growth of cerium(IV) oxide films by the electrochemical generation of base method," J. Alloys Compd., vol. 237, no. 1–2, pp, 1–5, 1996, doi: 10.1016/0925-8388(95)02048-9.
[24]Y. Yang, Y. Yang, X. Du, Y. Chen, Z. Zhang & J. Zhang, "Influences of the main anodic electroplating parameters on cerium oxide films," Appl. Surf. Sci., vol. 305, pp, 330–336, 2014, doi: 10.1016/j.apsusc.2014.03.078.
[25]L. Martínez, E. Román, J. L. De Segovia, S. Poupard, J. Creus & F. Pedraza, "Surface study of cerium oxide based coatings obtained by cathodic electrodeposition on zinc," Appl. Surf. Sci., vol. 257, no. 14, pp, 6202–6207, 2011, doi: 10.1016/j.apsusc.2011.02.033.
[26]L. Yang, X. Pang, G. Fox-Rabinovich, S. Veldhuis, & I. Zhitomirsky, "Electrodeposition of cerium oxide films & composites," Surf. Coatings Technol., vol. 206, no. 1, pp, 1–7, 2011, doi: 10.1016/j.surfcoat.2011.06.029.
[27]B. Bouchaud, J. Balmain, G. Bonnet & F. Pedraza, "Optimizing structural & compositional properties of electrodeposited ceria coatings for enhanced oxidation resistance of a nickel-based superalloy," Appl. Surf. Sci., vol. 268, pp, 218–224, 2013, doi: 10.1016/j.apsusc.2012.12.065.
[28]J. Creus, F. Brezault, C. Rebere & M. Gadouleau, "Synthesis & characterisation of thin cerium oxide coatings elaborated by cathodic electrolytic deposition on steel substrate," Surf. Coatings Technol., vol. 200, no. 14–15, pp, 4636–4645, 2006, doi: 10.1016/j.surfcoat.2005.04.027.
[29]I. Zhitomirsky, "Cathodic electrodeposition of ceramic & organoceramic materials. Fundamental aspects," Advances in Colloid & Interface Science, vol. 97, no. 1–3. pp, 279–317, 2002, doi: 10.1016/S0001-8686(01)00068-9.
[30]A. T. Kuhn & C. Y. Chan, "pH changes at near-electrode surfaces," J. Appl. Electrochem., vol. 13, no. 2, pp, 189–207, 1983, doi: 10.1007/BF00612481.
[31]M. Xue, N. Peng, C. Li, J. Ou, F. Wang & W. Li, "Enhanced superhydrophilicity & thermal stability of ITO surface with patterned ceria coatings," Appl. Surf. Sci., vol. 329, pp, 11–16, 2015, doi: 10.1016/j.apsusc.2014.12.145.
[32]L. Luo & et al., "Investigate interactions of water with mesoporous ceria using in situ VT-DRIFTS," Surf. Sci., vol. 691, no. June 2019, p, 121486, Jan. 2020, doi: 10.1016/j.susc.2019.121486.
[33]G. Carchini, M. García-Melchor, Z. Łodziana & N. López, "Underst&ing & Tuning the Intrinsic Hydrophobicity of Rare-Earth Oxides: A DFT+U Study," ACS Appl. Mater. Interfaces, vol. 8, no. 1, pp, 152–160, 2016, doi: 10.1021/acsami.5b07905.
[34]A. Matin, U. Baig, M. A. Gondal, S. Akhtar & S. M. Zubair, "Superhydrophobic & superoleophilic surfaces prepared by spray-coating of facile synthesized Cerium(IV) oxide nanoparticles for efficient oil/water separation," Appl. Surf. Sci., vol. 462, no. August, pp, 95–104, 2018, doi: 10.1016/j.apsusc.2018.08.104.
[35]V. Sundararajan & et al., "Drosophila melanogaster as an in vivo model to study the potential toxicity of cerium oxide nanoparticles," Appl. Surf. Sci., vol. 490, no. June, pp, 70–80, 2019, doi: 10.1016/j.apsusc.2019.06.017.
[36]E. Nourmohammadi & et al., "Cytotoxic activity of greener synthesis of cerium oxide nanoparticles using carrageenan towards a WEHI 164 cancer cell line," Ceram. Int., vol. 44, no. 16, pp, 19570–19575, 2018, doi: 10.1016/j.ceramint.2018.07.201.
[37]H. M. Marwani, E. M. Bakhsh, S. B. Khan, E. Y. Danish & A. M. Asiri, "Cerium oxide‑cadmium oxide nanomaterial as efficient extractant for yttrium ions," J. Mol. Liq., vol. 269, pp, 252–259, 2018, doi: 10.1016/j.molliq.2018.08.046.
[38]R. Suresh, V. Ponnuswamy & R. Mariappan, "Effect of annealing temperature on the microstructural, optical & electrical properties of CeO 2 nanoparticles by chemical precipitation method," Appl. Surf. Sci., vol. 273, pp, 457–464, 2013, doi: 10.1016/j.apsusc.2013.02.062.
[39]B. H. Solis & et al., "Initial stages of CO2 adsorption on CaO: A combined experimental & computational study," Phys. Chem. Chem. Phys., vol. 19, no. 6, pp, 4231–4242, 2017, doi: 10.1039/c6cp08504k.
[40]Q. Lv & et al., "Transparent & water repellent ceria film grown by atomic layer deposition," Surf. Coatings Technol., vol. 320, pp, 190–195, 2017, doi: 10.1016/j.surfcoat.2017.01.058.
[41]M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani & M. Salavati-Niasari, "Synthesis & characterization of CeO2 nanoparticles via hydrothermal route," J. Ind. Eng. Chem., vol. 21, no. 3, pp, 1301–1305, 2015, doi: 10.1016/j.jiec.2014.05.046.
[42]I. Milenković & et al., "Improving stability of cerium oxide nanoparticles by microbial polysaccharides coating," J. Serbian Chem. Soc., vol. 83, no. 6, pp, 745–757, 2018, doi: 10.2298/JSC171205031M.
[43]S. Prakash & et al., "Intrinsic hydrophilic nature of epitaxial thin-film of rare-earth oxide grown by pulsed laser deposition," Nanoscale, vol. 10, no. 7, pp, 3356–3361, 2018, doi: 10.1039/c7nr06642b.
[44]R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Ind. Eng. Chem., vol. 28, no. 8, pp, 988–994, 1936, doi: 10.1021/ie50320a024.