Phase transformations during high temperature brazing of dissimilar bonding of IN738 to TiAl intermetallic compound using Ni-Si-B ternary filler alloy
Subject Areas :Dariush Kokabi 1 , Ali Kaflou 2 * , Majid Pouranvari 3 , Reza Gholamipour 4
1 - Ph.D. student, IROST, Tehran, Iran
2 - Associated Prof., Department of Advanced Materials & Renewable Energies, IROST, Tehran, Iran
3 - Assistant Prof., Faculty of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
4 - Associated Prof., Department of Advanced Materials & Renewable Energies, IROST, Tehran, Iran
Keywords: Inconel738 TiAl intermetallic compound high temperature brazing MBF, 30 Microstructure Microhardness,
Abstract :
In this research microstructural evolution during high temperature brazing of dissimilar bonding of IN738 Ni-base superalloy to TiAl intermetallic compound using an amorphous Ni-Si-B ternary alloy was investigated. Phase transformations via solidification and solid state reactions are discussed. Observations indicated that the microstructure of IN738/MBF-30/TiAl joint consist of four different zones; isothermal solidification zone in both sides, athermally solidified zone in the bond center, diffusion affected zone in the IN738 side and reaction layer in the TiAl side. γ-Ni solid solution phase in ISZ of the IN738 side and binary isostructural solid solutions in ISZ of the TiAl side were formed during holding time at bonding temperature. Ni-Cr borides have been formed due to binary eutectics associated with γ-Ni solid solution in the ASZ during cooling. Cr-Mo borides and Ni-rich boride with different morphologies were precipitated in the DAZ. Ni element from MBF-30 molten interlayer reacted with γ-TiAl base, leading to the formation of the reaction layer containing single phase δ-Ti2Ni and triple phase τ2-Al2TiNi+τ4-AlNi2Ti+β1-NiAl layers adjacent to TiAl substrate. Microhardness evaluation of different zones indicated that some high hardness phases have formed in the bond region and presence of the γ-Ni solid solution in the ASZ cause to decrease the detrimental effects of them.
[1] A. Shirzadi, "Diffusion Bonding Aluminium Alloys and Composites", University of Cambridge, 1997, p. 167.
[2] M. Yamaguchi, H. Inui & I. Kazuhiro, "High-Temperature Structural Intermetallics", Acta Materialia, vol. 48, pp. 307-322, 2000.
[3] K. Maruyama, M. Yamaguchi, G. Suzuki, H. Zhou, Y. H. Kim & M. H. Yoo, "Effects of lamellar boundary structural change on lamellar size hardening in TiAl alloy", Acta Materialia, vol. 52, no. 17, pp. 10, 2004.
[4] H. S. Ren, H. P. Xiong, B. Chen, S. J. Pang, X. Wu, Y. Y. Chen & B. Q. Chen, "Transient liquid phase diffusion bonding of Ti–24Al–15Nb–1Mo alloy to TiAl intermetallics", Material Science and Engineering A, vol. 651, pp. 45-54, 2016.
[5] P. He, J. C. Feng, B. G. Zhang & Y. Y. Qian, "A new technology for diffusion bonding intermetallic TiAl to steel with composite barrier layers", Materials characterizaton, vol. 50, no. 6, 2003.
[6] W. B. Lee, Y. J. Kim & S. Jung, "Effects of copper insert layer on the properties of friction welded joints between TiAl and AISI 4140 structural steel", Intermetallics, vol. 12, pp. 671-678, 2004.
[7] J. Cao, J. Liu, X. Song, X. Lin & J. Feng, "Diffusion bonding of TiAl intermetallic and Ti3AlC2 ceramic: Interfacial microstructure and joining properties", Materials and Design, vol. 56, no. 7, 2014.
[8] S. Simoes, C. Tavares & A. Guedes, "Joining of γ-TiAl Alloy to Ni-Based Superalloy Using Ag-Cu Sputtered Coated Ti Brazing Filler Foil", MDPI, pp. 1-14, 2018.
[9] H. Li, H. Wei, P. He, T. Lin, J. Feng & Y. Huang, "Effects of alloying elements in GH99 superalloy on microstructure evolution of reactive brazing TiAl/GH99 joints", Intermetallics, vol. 34, pp. 69-74, 2013.
[10] X. Song, B. Ben, S. Hu & D. Tang, "Vacuum brazing high Nb-containing TiAl alloy to Ti60 alloy using Ti-28Ni eutectic brazing alloy", Journal of Alloys and Compounds, pp. 485-491, 2016.
[11] R. K. Shiue, S. K. Wu & S. Y. Chen, "Infrared brazing of TiAl intermetallic using BAg-8 braze alloy", Acta Materialia, vol. 51, pp. 1991-2004, 2003.
[12] R. K. Shiue, S. K. Wu & S. Y. Chen, "Strong bonding of infrared brazed a2-Ti3Al and Ti–6Al–4V using Ti–Cu–Ni fillers", Intermetallics, vol. 18, no, 8, 2010.
[13] R. K. Shiue, S. K. Wu, S. Y. Chen & C.Y. Shiue, "Infrared brazing of Ti50Al50 and Ti–6Al–4V using two Ti-based filler metals", Intermetallics, vol. 16, pp. 1083-1089, 2008.
[14] S. Simoes, F. Viana & M. F. Viera, "Joining Technology of Gamma-TiAl Alloys", CRC Press. Portugal, 2017.
[15] X. S. Qi, X. Y. Xue, B. Tang, H. C. Kou, R. Hu & J. S. Li, "Phase Evolution of Diffusion Bonding Interface between High Nb Containing TiAl Alloy and Ni-Cr-W Superalloy", Rare Metal Materials and Engineering, vol. 44, pp. 1575-1580, 2015.
[16] K. Dong & J. Kong, "A high-strength vacuum-brazed TiAl/Ni joint at room temperature and high temperature with an amorphous foil Zr-Al-Ni-Co filler metal", Journal of Manufacturing Processes, vol. 44, pp. 389-396, 2019.
[17] H. S. Ren, H. P. Xiong, W. M. Long, B. Chen, Y. X. Shen & S. J. Pang, "Microstructures and mechanical properties of Ti3Al/Ni-based superalloy joints brazed with AuNi filler metal", Journal of Materials Science & Technology, vol. 35, pp. 2070-2078, 2019.
[18] H. S. Ren, H. P. Xiong, W. M. Long, Y. X. Shen, S. J. Pang, B. Chen & Y. Y. Cheng, "Interfacial diffusion reactions and mechanical properties of Ti3Al/Ni-based superalloy joints brazed with AgCuPd filler metal", Materials characterizaton, vol. 144, no. 7, 2018.
[19] P. He, J. Feng & H. Zhou, "Microstructure and strength of brazed joints of Ti3Al-base alloy with NiCrSiB", Materials Characterizaton, vol. 52, pp. 309-318, 2004.
[20] M. Pouranvari, A. Ekrami & A. H. Kokabi, "Solidification and solid state phenomena during TLP bonding of IN718 superalloy using Ni–Si–B ternary filler alloy", Journal of Alloys and Compounds, vol. 563, pp. 143-149, 2013.
[21] A. Ghasemi & M. Pouranvari, "Microstructural evolution mechanism during brazing of Hastelloy X superalloy using Ni–Si–B filler metal", Science and Technology of Welding and Joining, vol. 23, pp. 441-449, 2017.
]22[ ع. خرم، ا. داودی جمالویی و ع. جعفری، "بررسی اثر همگنسازی بر ریزساختار و خواص مکانیکی اتصال فاز مایع گذرا بین اینکونل 718 و اینکونل 600"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 11، شماره 3، 59-49، 1396.
[23] K. Chandrasekaran, K. W. Richter & H. Ipser, "The Al–Ni–Si phase diagram—Part III: Phase equilibria in the nickel rich part", Intermetallics, vol. 14, pp. 491-497, 2006.
[24] A. Ghasemi & M. Pouranvari, "Intermetallic phase formation during brazing of a nickel alloy using a Ni–Cr–Si–Fe–B quinary filler alloy", Science and Technology of Welding and Joining, vol. 24, pp. 342-351, 2018.
[25] M. Pouranvari, A. Ekrami & A. H. Kokabi, "Phase transformations during diffusion brazing of IN718/Ni–Cr–B/IN718", Materials Science and Technology, vol. 29, pp. 980-98, 42013.
[26] M. Khakian, S. Nategh & S. Mirdamadi, "Effect of bonding time on the microstructure and isothermal solidification completion during transient liquid phase bonding of dissimilar nickel-based superalloys IN738LC and Nimonic 75", Journal of Alloys and Compounds, vol. 653, no. 9, 2015.
[27] A. Y. Shamsabadi, R. Bakhtiari & B. G. Eisaabadi, "TLP bonding of IN738/MBF20/IN718 system", Journal of Alloys and Compounds, vol. 685, pp. 896-904, 2016.
[28] M. A. Arafin, M. Medraj, D. P. Turner & P. Bocher, "Transient liquid phase bonding of Inconel 718 and Inconel 625 with BNi-2: Modeling and experimental investigations", Material Science and Engineering A, vol. 447, no. 9, 2007.
[29] W. F. Gale & E. R. Wallach, "Influence of isothermal solidification on microstructural development in Ni-Si-B filler metals", Materials Science and Technology, vol. 7, no. 12, pp. 1143-1149, 1991.
[30] W. F. Gale & Y. Guan, "Microstructure and mechanical properties of transient liquid phase bonds between NiAl and a Nickel-Base superalloy", Journal of Materials Science, vol. 34, pp. 1061-1071, 1999.
[31] H. S. Ren, H. P. Xiong, B. Chen, S. J. Pang, B. Q. Chen & L. Ye, "Microstructures and Mechanical Properties of Vacuum Brazed Ti3Al/TiAl Joints Using Two Ti-based Filler Metals", Materials Science and Technology, vol. 32, pp. 372-380, 2016.
[32] K. Zeng, R. Schmid-Fetzer, B. Huneau, P. Rogl & J. Bauer, "The ternary system Al–Ni–Ti Part II: Thermodynamic assessment and experimental investigation of polythermal phase equilibria", intermetallics, vol. 7, no. 13, 1999.
[33] S. Simoes, F. Viana, Kocak, A. S. Ramos, M. F. Vieira & M. T. Vieira, "Diffusion bonding of TiAl using reactive Ni/Al nanolayers and Ti and Ni foils", Materials Chemistry and Physics, vol. 128, no. 6, 2011.
[34] X. Li, L. Li & S. Qu, "Vacuum brazing of TiAl-based intermetallics with Ti-Zr-Cu-Ni-Co amorphous alloy as filler metal", Intermetallics, vol. 57, pp. 7-16, 2015.
_||_