Electrical Discharge Machining of Aluminum Matrix Composite Reinforced With Titanium Oxide Nano-Particles
Subject Areas :Ali akbar lotfi 1 * , Saeed Daneshmand 2
1 - Assistant Professor, Department of Engineering, Yadegar -e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
2 - Associate Professor, Department of Mechanical Engineering, Majlesi Branch, Islamic Azad University, Isfahan, Iran
Keywords: Electrical discharge machining, Tool wear, metal matrix composites, Nano-particles of titanium dioxide, material removal rate,
Abstract :
.Nano-particles used in metal matrix composites show a various range of mechanical, chemical and physical features, causing significant improvements in mechanical strength, hardness and thermal characteristics. They can also change the capability of machining. Electrical discharge machining is considered as an integrate part of hard metal machining. In this paper, the parameters of electrical discharge machining for aluminum composite material improved by Nano-particles of titanium dioxide have been studied. The purpose of this study was to evaluate the impacts of electrical current and voltage and pulse on and off-time on the material removal rate, tool wear rate and surface roughness. Kerosene as a dielectric and copper electrode were used to carry out the experiment. In addition, Analysis of variance was utilized to authenticate the experimental results. The result shows that Nano-particles titanium dioxide has trivial effects on machining parameters due to being insulators. They also do not melt in the process of electrical discharge machining. Moreover, the electrical current and the pulse on time have the most influence on the material removal rate, tool wear rate and surface roughness. By increasing the electrical current and pulse on time, tool wear rate and surface roughness have grown, while by increasing the pulse off time tool wear rate has decreased. The average wear rate of the electrode in the aluminum alloy 2024 reinforced with 5% titanium oxide nanoparticles is 46.3%, equivalent to 0.346 gr, more than the weight loss of the aluminum 2024 specimen.
[1] B. Chandra Kandpal, J. kumar & H. Singh, “Machining of aluminium metal matrix composites with electrical discharge machining - a reviewˮ, Materials Today, pp. 1665-1671, 2015.
[2] Ch. Roy, Kh. Hussain Syed & P. Kuppan, “Machinablity of al/ 10%sic/ 2.5%tib2 metal matrix composite with powder-mixed electrical discharge machiningˮ, Procedia Technology, Vol. 25, pp. 1056- 1063, 2016.
[3] M. Sivaraj & N. Selvakumar, “Experimental analysis of Al-TiC sintered nano composite on EDM process parameters using ANOVAˮ, Materials and Manufacturing Processes, Vol. 31, pp. 802-812, 2016.
[4] S Gopalakannan1 & T Senthilvelan, “A parametric study of electrical discharge machining process parameters on machining of cast Al/B4C metal matrix nanocomposites, Proceedings of the Institution of Mechanical Engineersˮ, Part B: J Engineering Manufacture, Vol. 227, pp. 993-1004, 2013.
[5] C. Velmurugan, R. Subramanian, S. Thirugnanam & B. Ananadavel, “Experimental investigations on machining characteristics of Al 6061 hybrid metal matrix composites processed by electrical discharge machiningˮ, Journal of Engineering Science and Technology, Vol. 3, No. 8, pp. 87-101, 2011.
[6] Y. Lin, A. Wang, D. Wang & C. Chen, “Machining performance and optimizing machining parameters of Al2O3–TiC ceramics using EDM based on the taguchi methodˮ, Materials and Manufacturing Processes, Vol. 24, pp. 667-674, 2009.
[7] N. P. Hung, L. J. Yang & K.W. Leong, “Electric discharges machining (EDM) of cast metal matrix compositesˮ, Journal of Materials Processing Technology, Vol. 44, pp. 229-236, 1994.
[8] K. M. Patel, P. M. Pandey & P. Venkateswara Rao, “Surface integrity and material removal mechanisms associated with the EDM of Al2 O3 ceramic compositeˮ, Journal of Refractory Metals and Hard Materials, Vol. 27, pp. 892-899, 2009.
[9] P. Narender Singh, K. Raghukandan, M. Rathinasabapathi & B. C. Pai, “Electrical discharge machining of Al- 10% SiC as cast metal matrix compositesˮ, Journal of Materials Processing Technology, pp. 1653-1657, 2004.
[10] D. Akshay, K. Pradeep & S. Inderdeep, “Experimental investigation and optimization in EDM of Al 6063 SiCp metal matrix compositeˮ, Journal of Machining and Machability of Materials, Vol. 3, pp. 293-308, 2008.
[11] R. Karthikeyan, P. R. Lakshmi Narayanan & R. S. Naagarazan, “Mathematical modeling for electric discharge machining of aluminium-silicon carbide particulate compositesˮ, Journal of Materials Processing Technology, Vol. 87, No. 1-3, pp. 59- 63, 1999.
[12] V. Senthilkumar & B. U. Omprakash, “Effect of Titanium Carbide particle addition in the aluminium composite on EDM process parametersˮ, Journal of Manufacturing Processes, Vol. 13, pp. 60-66, 2011.
[13] M. Kalayarasan & M. Murali, “Optimization process Parameters in edm using Taguchi method with grey relational analysis and topsis for ceramic compositesˮ, Journal of Engineering Research in Africa, Vol. 22, pp. 83-93, 2016.
[14] K. Padmavathi & R. Ramakrishnan, “Tribological properties of micro and nano TiO2 reinforced aluminium metal matrix compositesˮ, Journal of Engineering and Technology, Vol. 9, pp. 3368-3373, 2017.
[15] S. Siddesha, T. D. Jagannath, T. R. Punith & N. S. Rakshith, “Effects of fabrication of aluminium 2024/Tio2 metal matrix compositeˮ, Journal of Innovative Research & Development, Vol. 5, pp. 174-177, 2016.
[16] ب. مسعودی و س. دانشمند، "بررسی تأثیر پارامترهای ماشینکاری تخلیه الکتریکی، بر روی ماده مرکب پایه آلومینیوم 2024 با استفاده از تحلیل مقدار کل نرمال شده پارامترها(TNQL) و نسبت سیگنال به نویز(S/N) "، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد / سال یازدهم / شماره اول / بهار 1396.
[17] M. Ramulu, G. Paul & J. Patel, “EDM surface effects on fatigue strength of 15 vol.% SiCp/Al metal matrix composite materialˮ, Composite Structure, Vol. 54, pp. 79-86, 2001.
_||_