The effect of niobium oxide (Nb2O5 ) on the sintering behavior of composite Al2O3-ZrO2
Subject Areas :حسین خوارزمی پور 1 , khalil ranjbar 2
1 - دانشگاه آزاد اهواز
2 - Martyr Chamran University professor
Keywords: grain size, oxide niobium, zirconia phase, alumina -zirconia composite, Sinter,
Abstract :
In this research, the effect of adding niobium oxide to the microstructure and stability of the zirconia phase in the sintering sample obtained from an alumina-zirconia composite following mechanical milling. To this end, alumina and zirconia powders were used as the raw materials and niobium oxide powder was used as additive. All of the alumina-zirconia composites contained an invariant zirconia content equal to 10 weight percent, and 1 weight percent of niobium oxide was added to composite samples. Composite powders were subjected to axial pressure in tablet casts. Afterwards, samples were exposed to sintering for two hours in a thermal furnace at a temperature of 1300 to 1500 . X-ray diffraction was used to identify phases, and microstructures were examined through the SEM (scanning electron microscope) method. Examination and experiment results indicated that niobium oxide considerably influenced sintering density, and increased density up to 3.75 g/cm3. On the other hand, the size of background particles increased to 2.19 microns after sintering and the tetragonal phases decreased. In this research, the effect of this oxide on the sintering mechanism of the alumina-zirconia composite and stability of the zirconia tetragonal phase were discussed and analyzed.
[1] ن، سلطانی، "آشنایی با کامپوزیت های زمینه فلزی،پلیمری،سرامیکی و فرآیند های ساخت"، چاپ اول، تهران: انتشارات جهان جام جم، 1387.
[2] Azhar & L. Chun Choong, “Effects of Cr2O3 Addition on the Mechanical Properties, Microstructure and Wear Performance of Zirconia Toughened-Alumina (ZTA) CuttingInserts”, Journal of Alloys and Compounds, Vol. 513, pp. 91– 96, 2012.
[3] D. Casellas, “Fracture Toughness of Alumina and ZTACeramics: Microstructural Coarsening Effects”, Journal of Materials Processing Technology, Vol. 143–144, pp. 148–152, 2003.
[4] N. A. Rejab & A. Azhar, “The Relationship between Microstructure and Fracture Toughness of Zirconia Toughened Alumina (ZTA) Added with MgO and CeO2”, International Journal of Refractory Metals and Hard Materials, Vol. 41, pp. 522–530, 2013.
[5] N. A. Rejab & A. Azhar, “The Effects of CeO2 Addition on the Physical, Microstructural and Mechanical Properties of Yttria Stabilized Zirconia Toughened Alumina (ZTA)”, International Journal of Refractory Metals and Hard Materials, Vol. 36, pp. 162–166, 2013.
[6] م. گودرزی، ع. سعیدی و ع. شفیعی، "اثر مقدار آلومینیوم مصرفی بر تولید کامپوزیت زمینه آلومینیوم تقویت شده با ذرات TiN+Al2O3 به روش آلیاژسازی مکانیکی"، مجله علمی و پژوهشی فرآیندهای نوین در مهندسی مواد، سال پنجم، شماره اول، بهار1390.
[7] A. M. Hassan, M. Awaad & S. M. Naga, “Toughening and Strengthening of Nb2O5 Doped Zirconia/Alumina (ZTA) Composites”, Intertional Journal of Refractory Metals and Hard Matnaerials, Vol. 48, pp. 338-345, 2015.
[8] A. M. Hassan, M. Awaad & S. M. Naga, “Densification Behavior and Mechanical Properties of Niobium-Oxide-Doped Alumina Ceramics”, Journal of Ceramis Science and Technology, Vol. 05, No. 01, pp. 51-56, 2014.
[9] Y. F. Hsu, S. F. Wang, Y. R. Wang & S. C. Chen, “Effect of Niobium Doping on the Densification and Grain Growth in Alumina”, Ceramics International, Vol. 34, pp. 1183–1187, 2008.
[10] P. D. E. Louis Winnubst & T. H. P. Leuwerink, “Effect of Calcination on the Sintering of Gel-Derived, Zirconia-Toughened Alumina”, Journal of American Ceramic Society, Vol. 77, pp. 2376-2380, 1994.
[11] R. Gopi Chandran & K. C. PATIL, “Combustion Synthesis and Properties of Mullite-Zirconia Composites”, Journal of Materials Science, Vol. 31, pp. 5773-5779, 1996.
[12] ف، وحیدیان و م، رضوانی، "بررسی سینترپذیری و تبلور شیشه سرامیک SiO2-CaO-MgO-Al2O3تقویت شده با ذرات نانومتریزیرکونیا"، مجله علمی و پژوهشی فرآیندهای نوین در مهندسی مواد، سال ششم، شماره اول، بهار1391.
[13] K. Maiti & A. Sil, “Microstructural Relationship with Fracture Toughness of Undoped and Rare Earths (Y, La) Doped Al2O3–ZrO2 Ceramic Composites”, Ceramic International, Vol. 37, pp. 2411–2421, 2011.
[14] D. J. kim, H. J. Jung & D. H. Cho, “Phase Transformations of Y2O3 and Nb2O5 Doped Tetragonal Zirconia During Low Temperature Aging in Air”, Solid State Ionics, Vol. 80, pp. 67-73, 1995.
[15] G. K. Layden, “The System AI2O3-N b2O5”, Journal of The American Ceramic Society-Discussions and Notes, Vol. 46, No. 10, pp. 506, 1963.
[16] F. Guo & P. Xiao, “Effect of Fe2O3 Doping on Sintering of Yttria-Stabilized Zirconia”, Journal of the European Ceramic Society, Vol. 32, pp. 4157–4164, 2012.
[17] Q. Dong, Z. H. Du, T. S. Zhang, J. Lu, X. C. Song & J. Ma, “Sintering and Ionic Conductivity of 8YSZ and CGO10 Electrolytes with Small Addition of Fe2O3: A Comparative Study”, International Journal of Hydrogen Energy, Vol. 34, pp. 7903–7909, 2009.
[18] M. M. R. Boutz, A. J. A. Winnubst, F. H. Hartgers, A. J. Burggraaf, “Effect of Additives on Densification and Deformation of Tetragonal Zirconia”, Journal of Materials Science, Vol. 29, pp. 5374–5382, 1994.
[19] W. H. Rhodes & R. E. Carter, “Cationic Self-Diffusion in Calcia-Stabilized Zirconia”, Journal of American Ceramic Society, Vol. 49, No. 5, pp. 244–249, 1966.
[20] R. J. D. Tilley, “Principles and Applications of Chemical Defects”, Stanley Thornes Ltd, Cheltenham, U.K., 1998.
[21] B. F. Pedersen, “The Crystal Structure of Aluminum Niobium Oxide (AlNbO4)”, Acta Chemica Scandinavica, Vol. 16, pp. 421 – 430, 1962.
_||_