Effect of Shoulder Surface Angle of Tool on Joint Properties in Friction Stir Welding of 5052 Aluminium Alloy
Subject Areas :
1 - استاد یار
Keywords: Friction Stir Welding, 5052 Aluminum Alloy, Lap joints, Hook defect, Tensile-shear properties,
Abstract :
Friction stir lap welding of 5052 aluminum alloy was performed in the present research, and lap joints were fabricated by rotational speed of 1450 rpm and welding speed of 63 mm/min. Three tools with different shoulder surface angle (i.e. 0, 5, and 10 degrees) were designed and used. The effect of shoulder surface angle on joint properties was studied by optical microscopy and tensile-shear test. The results showed that only at angle of shoulder surface of zero-degree a continuous channel-like void was formed in the advancing side near the nugget zone and extended along the welding direction. The lap joints with the highest fracture strength has the smallest hook size, and is fractured at fraying surface rather than in the hook defect during tensile-shear test. Hook size and effective plate thickness (EPT) decreased from 4.5 to 2 and 2.25 to 1, respectively, as the angle of shoulder surface increased while the highest tensile-shear properties were obtained around 4650 N/mm at angle of shoulder surface of 10 degrees.
[1] M. R. Johnsen, “Friction Stir Welding Takes off at Boeingˮ, Weld. J., Vol. 78, pp. 35–39, 1999.
[2] D. Joelj, “The Friction Stir Welding Advantageˮ, Weld. J., Vol. 80, pp. 30–34, 2001.
[3] R. S. Mishra & Z. Y. Ma, “Friction Stir Welding and Processingˮ, Mater. Sci. Eng. Rep., Vol. 50, pp. 1–78, 2005.
[4] C. Menzemer & T. S. Srivatsan, “The effect of environment on fatigue crack growth behaviour of Aluminum alloy 5456ˮ, Mater. Sci. Eng, Vol. 271A, pp. 188-195, 1999.
[5] S. W. Lee & J. W. Yeh, “Microstructural Evolution and super plasticity of Al-5.8Mg- 0.23Mn alloys processed by reciprocating extrusionˮ, Metall. Mater. Trans, Vol. 36A, pp. 2225-2234, 2005.
[6] W. P. Schonberg, “Aluminum 2219-T87 and 5456-H116: A comparative study of spacecraft walls materials in dual-wall structures under hypervelocityˮ, Acta Astronautica, Vol. 26, pp.799-812, 1992.
[7] M. Ericsson, L. Z. Jin & R. Sandstrom, “Fatigue properties of friction stir overlap weldsˮ, Int J Fatigue, Vol. 29, pp. 57-69, 2007.
[8] G. F Zhang, W. Su, J. Zhang, Z. X. Wei & J. X Zhang, “Effects of shoulder on interfacial bonding during friction stir lap welding of aluminium thin sheets using tool without pinˮ, Trans. Nonferrous Met. Soc. China, Vol. 20, pp. 2223-2228, 2010.
[9] م. صادقی گوغری، م. کثیری و ک. امینی، "بررسی نسبت سرعت دوران به پیشروی ابزار در جوشکاری همزن اصطکاکی اتصال غیر همجنس آلیاژ آلومینیوم 5083 به تیتانیوم خالص تجاری"، فصلنامه فرآیند های نوین در مهندسی مواد ، سال نهم، شماره سوم، صفحات 257-266، پاییز1394.
[10] L. Cederqvist & A. P. Reynolds, “Factors Affecting the Properties of Friction Stir Welded Aluminum Lap Jointsˮ, Weld. J. Res. Suppl., Vol. 80, pp. 281–287, 2001.
[11] Y. C. Chen & K. Nakata, “Friction Stir Lap Joining Aluminum and Magnesium Alloysˮ, Scr. Mater, Vol. 58, pp. 433–436, 2008.
[12] M. K. Yadava, R. S. Mishra, Y. L. Chen, B. Carlson, & G. J. Grant, “Study of Friction Stir Joining of Thin Aluminium Sheets in Lap Joint Configurationˮ, Sci. Technol. Welding. Joining. Vol. 15, pp. 70–75, 2010.
[13] S. Babu, G. D. J. Ram, P. V. Venkitakrishnan, G. M. Reddy & K. P. Rao, “Microstructure and Mechanical Properties of Friction Stir Lap Welded Aluminum Alloy AA2014ˮ, J. Mater. Sci. Technol., Vol. 28, pp. 414–426, 2012.
[14] ف. غروی، ا. ابراهیم زاده و ع. سهیلی، "ارزیابی ریزساختار و خواص مکانیکی اتصال لبه روی هم جوشکاری اصطکاکی اغتشاشی آلیاژ آلومینیوم 6061 در سرعت های پیشروی متفاوت"، فصلنامه فرآیند های نوین در مهندسی مواد ، سال دهم، شماره دوم، صفحات 115-129، تابستان1395.
[15] G. M. D. Cantin, S. A. David, W. M. Thomas, E. Lara-Curzio & S. S. Babu, “Friction Skew-Stir Welding of Lap Joints in 5083-O Aluminiumˮ, Sci. Technol. Welding. Joining, Vol. 10, pp. 268–280, 2005.
[16] L. Dubourg, A. Merati & M. Jahazi, “Process Optimization and Mechanical Properties of Friction Stir Lap Welds of 7075-T6 Stringers on 2024-T3 Skinˮ, Mater. Design, Vol. 31, pp. 3324–3330, 2010.
[17] G. Buffa, G. Campanile, L. Fratini & A. Prisco, “Friction Stir Welding of Lap Joints: Influence of Process Parameters on the Metallurgical and Mechanical Propertiesˮ, Mater. Sci. Eng, Vol. 519A, pp. 19–26, 2009.
[18] Q. Yang, X. Li, K. Chen & Y. J. Shi, “Effect of Tool Geometry and Process Condition on Static Strength of a Magnesium Friction Stir Lap Linear Weldˮ, Mater. Sci. Eng, Vol. 528A, pp. 2463–2478, 2011.
[19] S. Yazdanian, Z. W. Chen & G. Littlefair, “Effects of Friction Stir Lap Welding Parameters on Weld Features on Advancing Side and Fracture Strength of AA6060-T5 Weldsˮ, J. Mater. Sci., Vol. 47, pp. 1251–1261, 2012.
[20] X. Cao & M. Jahazi, “Effect of Tool Rotational Speed and Probe Length on Lap Joint Quality of a Friction Stir Welded Magnesium Alloyˮ, Mater. Design, Vol. 32, pp. 1–11, 2011.
[21] H. Liu, Y. Hu, Y. Peng, C. Dou & Z. Wang, “the effect of interface defect on mechanical properties and its formation mechanism in friction stir lap welded joints of aluminum alloysˮ, Journal of Materials Processing Technology, Vol. 238, pp. 244–254, 2016.
[22] H. Zhang, M. Wang, X. Zhang, Z. Zhu & T. Yu, “Effect of welding speed on defect features and mechanical performance of friction stir lap welded 7B04 aluminium alloyˮ, Metal, Vol. 6, pp. 1-11, 2016.
[23] D. A. Burford, B. M. Tweedy & C. A. Widener, “Influence of Shoulder Configuration and Geometric Features on FSW Track Propertiesˮ, 6th International Symposium on Friction Stir Welding, Saint-Sauveur, Nr Montréal, Canada, October 10-13, 2006.
[24] L. Cederqvist & A. P. Reynolds, “Factors Affecting the Properties of Friction Stir Welded Aluminum Lap Jointsˮ, Weld. J. Res. Suppl., Vol. 80, pp. 281–287, 2001.
[25] G. Buffa, G. Campanile, L. Fratini & A. Prisco, “Friction Stir Welding of Lap Joints: Influence of Process Parameters on the Metallurgical and Mechanical Propertiesˮ, Mater. Sci. Eng, Vol. 519A, pp. 19–26, 2009.
[26] C. Y. Lee, W. B. Lee, J. W. Kim, D. H. Choi, Y. M. Yeon & S. B. Jung, “Lap Joint Properties of FSWed Dissimilar Formed 5052 Al and 6061 Al Alloys with Different Thicknessˮ, J. Mater. Sci., Vol. 43, pp. 3296–3304, 2008.
[27] V. Soundararajan, E. Yarrapareddy & R. Kovacevic, “Investigation of the Friction Stir Welding of Aluminum Alloys AA 5182 and AA 6022ˮ, JMEPEG, Vol. 16, pp. 477–484, 2007.
[28] P. Lacki, Z. Kucharczyk & R. E. Sliwa, “Effect of tool shape on temperature filed in friction stir spot weldingˮ, Arch. Metal. Mat., Vol. 58, pp. 595-599, 2013.
[29] M. Wang, H. Zhang, X. Zhang & J. Zhang, “Effect of Pin Length on Hook Size and Joint Properties in Friction Stir Lap Welding of 7B04 Aluminum Alloyˮ, JMEPEG, Vol. 23, pp. 1881–1886, 2014.
[30] K. Kumar & S. V. Kailas, “The Role of Friction Stir Welding Tool on Material Flow and Weld Formationˮ, Mater. Sci. Eng, Vol. 485A, pp. 367–374, 2008.
[31] H. J. Zhang & H. J. Liu, “Characteristics and Formation Mechanisms of Welding Defects in Underwater Friction Stir Welded Aluminum Alloyˮ, Metallo. Microstructure. Anal, Vol. 1, pp. 269–281, 2012.
[32] H. Liu, Y. Zhao, Y. Hu & SH. Chen, “Microstructural characteristics and mechanical properties of friction stir lap welding of AL clad 7B04-T74 aluminium alloyˮ, Int. J. Adv. Manuf. Technol., Vol. 78, pp. 1415-1425, 2015.
[33] L. Dubourg, A. Merati & M. Jahazi, “Process Optimization and Mechanical Properties of Friction Stir Lap Welds of 7075-T6 Stringers on 2024-T3 Skinˮ, Materials and Design, Vol. 31, No. 7, pp. 3324-30, 2010.
[34] S. K. Chionopoulos, C. H. I. Sarafoglou, D. I. Pantelis & V. J. Papazoglou, “Effect of tool pin and welding parameters on friction stir welded (FSW) marine aluminium alloysˮ, Proceedings of the 3rd International Conference on Manufacturing Engineering (ICMEN), Chalkidiki, Greece, 2008.
[35] H. Badarinarayan, Y. Shi, X. Li & K. Okamoto, “Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminium 5754-O sheetsˮ, International Journal of Machine Tools and Manufacture, Vol. 49, pp. 814-23, 2009.
[36] X. Cao & M. Jahazi, “Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloyˮ, Materials and Design, Vol. 32, pp. 1-11, 2011.
_||_