Synthesis of ZnWO4 nanoparticles and manufacturing scintillator for detecting Gama- rays
Subject Areas :رسول صراف ماموری 1 * , آرزو عبدالرحمانی 2 , خیراله محمدی 3 , محسن روشن 4
1 - مدیر گروه سرامیک دانشگاه تربیت مدرس
2 - دانشگاه تربیت مدرس
3 - دانشگاه مالک اشتر
4 - دانشگاه مالک اشتر
Keywords: Co-precipitation, Am241, Cs137, Centeral Composite Design (CCD), Gama-Rays Spectroscopy,
Abstract :
In this study, ZnWO4 nanoparticles were synthesized through co-precipitation method with sodium tungstate dehydrate (Na2WO4.2H2O) and zinc nitrate hexahydrate (Zn (NO3)2.6H2O) as starting materials. In order to optimize the conditions for obtaining smallest mean particle size, Central Composite Design (CCD) was used and three parameters of temperature, weight ratio of precursors, and pH value were studied in five levels. The obtained ZnWO4 nanoparticles were characterized by Field Emission Scanning Electron Microscopy (FE-SEM), powder x-ray diffraction (XRD), thermal gravimetric- differential scanning calorimetry (TG-DSC) and photoluminescence (PL). The results showed that optimal conditions for smallest mean nanoparticles with particle size of 37.3 6.9 nm were temperature =83 , weight ratio of precursor equal to 1.1, and pH=6. The resulting ZnWO4 nanoparticles were dry- pressed to green compact pellets with a diameter of 11mm and thickness of 1.5 nm at the compaction pressure of 500 MPa. The densification of nanoparticles compacts was carried out by a pressure less sintering at 950 for 2 hours in air atmosphere. Scintillation properties of pellets were determined by means of Gama-rays spectroscopy. The results showed that manufactured ZnWO4 pellets illustrated counting sensitivity to Cs137 and Am241 irradiation sources and couldn’t detect energy of Gama-rays emitted from this two source.
[1] J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang & X. Fu, “A Facile Microwave Solvothermal Process to Synthesize ZnWO4 Nanoparticles”, Journal of Alloys and Compounds, Vol. 480, pp. 684–688, 2009.
[2] I. Foldvary & A. Peter, “Improvement of the Quality of ZnWO4 Single Crystals for Scintillation Applications”, Journal of Crystal Growth, Vol. 79, pp. 714-719, 1986.
[3] H. Kraus, F. A. Danevich & S. Henry, “ZnWO4 Scintillators for Cryogenic Dark Matter Experiments”, Nuclear Instruments and Methods in Physics Research, Vol. 600A, pp. 594–598, 2009.
[4] J. Arin, P. Dumrongrojthanath & O. Yayapao, “Synthesis, Characterization and Optical Activityof La-doped ZnWO4 nanorods by Hydrothermal method”, Superlattices and Microstructures, Vol. 67, pp. 197–206, 2014.
[5] F. Yanga, Ch. Tua & J. Lia, “Growth and Optical Property of ZnWO4: Er3+ crystal”, Journal of Luminescence, Vol. 126, pp. 623–628, 2014.
[6] F. Yang, D. K. Taggart & R. M. Penner, “Fast Sensitive Hydrogen Gas Detection Using Single Palladium Nanowires that Resist Fracture”, Nanolett, Vol. 9, pp. 21-82, 2009.
[7] L. You, Y. Cao, Y. F. Sun, P. Sun, T. Zhang, Y. Du & G. Y. Lu, “Humidity Sensing Properties of Nanocrystalline ZnWO4 with Porous Structure”, Sensors and Actuators, Vol. 161B, pp. 799-804, 2012.
[8] Z. Tang, X. L. J. Yung, J. Yu, J. Wang & Z. Tang, “Mixed Potential Hydrogen Sensor Using ZnWO4 Sensing Electrode”, Sensors and Actuators B, pp. 520-525, 2014.
[9] ح. ر. ابراهیمی و ع. ر. امینی،" سنتز نانوذرات Mg0.5Zn0.5Fe2O4 به روش هم رسوبی و بررسی خواص حسگری آن"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 4، 129-138، زمستان 1395.
[10] G. Huang, R. Shia & Y. Zhu, “Photocatalytic Activity and Photoelectric Performance Enhancement for ZnWO4 by Fluorine Substitution”, Journal of Molecular Catalysis A: Chemical, pp. 100– 105, 2011.
[11] R. C. Pullar & S. Frarrah, “MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics”, Journal of the European Ceramic Society, pp. 1059-1063, 2007.
[12] X .Jiang, J. Ma, J. Liu, Y. Ren, B. Lin, J. Tao & X. Zhu, “Synthesis of ZnWO4 Nanoparticles by a Molten Salt Method”, Materials Letters, Vol. 61, pp. 4595-4598, 2007.
[13] J. Ryu, Ch. Lim & K. Auh, “Synthesis of ZnWO4 Nanocrystalline Powders by the Polymerized Complex Method”, Materials Letters, Vol. 57, pp. 1550-1554, 2003.
[14] M. Mancheva, R. Iordanova & Y. Dimitriev, “Mechanochemical Synthesis of Nanocrystalline ZnWO4 at Room Temperature”, Journal of Alloys and Compounds, Vol. 509, pp. 15-20, 2011.
[15] J. Grabis, D. Jankovica, M. Kodols & D. Rašmane, “Photocatalytic Activity of ZnWO4 Nanoparticles Prepared by Combustion Synthesis”, Latvian Journal of Chemistry, pp. 93-98, 2012.
[16] S. Chen, J. Zhou, X. Chen, J. Li, L. Hong Li, J. Ming Hong, Z. Xue & X. Zeng You, “Fabrication of Nanocrystalline ZnWO4 with Different Morphologies and Sizes via Hydrothermal Route”, Chemical Physics Letters, Vol. 375, pp. 185-190, 2003.
[17] K. M. Garadkar, L. A. Ghule, K. B. Sapnar &S. D. Dhole, “A Facile Synthesis of ZnWO4 Nanoparticles by Microwave Assisted Technique and its Application in Photocatalysis”, Materials Research Bulletin, pp. 1105-1109, 2013.
[18] L. Nadaraia, “Preparation of Tungstate Nanopowders by Sol-Gel Method”, IEEE Transactions on Nuclear Science, pp. 1370-1376, 2010.
[19] M. Rahimi-Nasrabadi, S. Pourmortazavi, M. Ganjali, S. Hajimirsadeghi & M. Zahedi, “Electrosynthesis and characterization of zinc tungstate nanoparticles”, Journal of Molecular Structure, Vol. 1047, pp. 31-36, 2013.
[20] Kalinko & A. Kuzmin, “Static and dynamic structure of ZnWO4 nanoparticles”, Journal of Non-Crystalline Solids, Vol. 357, 2595-2599, 2011.
[21] N. Saha, “Investigation on the Synthesis and Optical Properties of Nanostructured ZnWO4”, School of Materials Science and Nanotechnology, Kolkata, pp. 35-37, 2012.
[22] F. Cappella, R. Bernabei & P. Belli, “On the Potentiality of the ZnWO4 Anisotropic Detectors to Measure the Directionality of Dark Matter”, Eur. Phys. J. C, pp. 1-13, 2013.
[23] Kalinko, A. Kuzmin & R. A. Evarestov, “Ab initio Study of the Electronic and Atomic Structure of the Wolframite-Type ZnWO4”, Solid State Communications, Vol. 149, pp. 425-428, 2009.
[24] J. Yan & Y. Shen, “Synthesis and Photocatalytic Properties of ZnWO4 Nanocrystals via a Fast Microwave-Assisted Method”, The ScientificWorld Journal, pp. 8, 2013.
[25] P. A. Rodnyi,” Physical processes in inorganic scintillators”, CRC Press LLC, Chapter1, pp. 45-47, 1997.
[26] X. Leng, L. Dai, X. Cha, X. Yuheng & J. Xiaotian, “Growth and Scintillation of Doped ZnWO4 Crystal”, Optic, Vol. 125, pp. 1267-1270, 2014.
[27] F. Danevich, S. Henry & H. Kraus, “Scintillation properties of pure and Ca-doped ZnWO4 crystals”, phys. stat. sol, Vol. 205A, pp. 335–339, 2008.
[28] Z. Wang, G. Zhou & X. Qin, “Transparent La2_xGdxZr2O7 Ceramics Obtained by Combustion Method and Vacuum Sintering”, Journal of Alloys and Compounds, Vol. 585, pp. 497-502, 2014.
[29] Y. Shi a, Q. Chen b & J. Shi, “Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics”, Optical Materials, Vol. 31, pp. 729–733, 2009.
[30] M. Guzik, J. Pejchal & A. Yoshikawa, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic”, American Chemical Society, pp. 3327-3334, 2014.
[31] T. Yanagida, Y. Fujimoto & K. Kamada, “Scintillation Properties of Transparent Ceramic Pr: LuAG for Different Pr Concentration”, IEEE Transaction on Nuclear Science, pp. 2146-2151, 2012.
[32] ع، گلشنی عجب شیر، م، رضوانی و م، ص، شاکری،" بررسی شیشه سرامیک های شفاف Li2O-Al2O3-SiO2 در حضور آلاینده Nd2O3"،فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 4، 21-، زمستان 1394.
[33] U. Seetawan, S. Jugsujinda & T. Seetawan, “Effect of Calcinations Temperature on Crystallography and Nanoparticles in ZnO Disk”, Materials Sciences and Applications, pp. 1302-1306, 2011.
[34] D. Susanti, R. Wibawa & L. Tananta, “The effect of calcination temperature on the capacitive properties of WO3-based electrochemical capacitors synthesized via a sol--gel method”, Front. Mater. Sci, pp. 370–378, 2013.
[35] L. Wang, Y. Ma & H. Jiang, “Luminescence Properties of Nano and Bulk ZnWO4 and Their Charge Transfer Transitions”, Journal of Materials Chemistry C, 4651–4658, 2014.
_||_