The effect of heat treatment and copper on the tensile properties and quality index of Al-7Si-0.35Mg-xFe alloys
Subject Areas :رضا تقی آبادی 1 * , محمد تلافی نوغانی 2 , یلدا کریمی 3 , مهسا ایرانشاهی 4 , مریم نظری 5
1 - استادیار هیئت علمی دانشگاه بین المللی امام خمینی (ره)
2 - استادیار و هیئت علمی دانشگاه بین المللی امام خمینی (ره)
3 - فارغ التحصیل کارشناسی
4 - دانشجوی کارشناسی ارشد
5 - کارشناس ارشد آزمایشگاه متالوگرافی دانشگاه بین المللی امام خمینی (ره)
Keywords: Copper, Tensile Properties, Heat treatment, A356 Alloy, Quality Index,
Abstract :
In this study, the effect of Cu addition (0.5, 1.0 and 1.5 wt%) and T6 heat treatment on the tensile properties and quality index of A356 alloy containing different amount of iron (0.5-1.5 wt%) was investigated. According to the results in as-cast condition, the addition of copper to the iron bearing alloys increased the tensile strength by about 25% while substantially decreased the percent elongation (by almost 80%). After heat treatment, however, the tensile strength and the quality index of the alloy containing 1 wt% copper and 1.5 wt% iron were found to be increased by about 100 and 35% as compared to the base alloy, respectively. The improvement in the quality index was attributed to the precipitation hardening effect of Al2Cu and Mg2Si precipitates as well as thermal modification of eutectic silicon and iron-rich platelets, which increase the tensile strength, and ductility of the alloy.
[1] J. R. Davis, ASM Specialty Handbook, Aluminum and Aluminum Alloys, ASM International, OH, 1993.
[2] ع. نعمتی، ا. حلوایی، ا. مباشرپور و ا. ر. عباسیان، "تاثیر پارامترهای ریختهگری و سلامت قطعات هوا فضایی از آلیاژ 356 به روش ریختهگری دقیق"، فصلنامه علمی-پژوهشی فرایندهای نوین در مهندسی مواد، دوره 2، شماره 1، 17 تا 24، 1387.
[3] ن - ال. عرب، ص. حبیبی، م. سودمند و ا. شریفی، "بررسی تاثیر نوع جوانهزا بر ریزدانگی و پارامترهای انجماد آلیاژ 356 به کمک آنالیز حرارتی منحنیهای سرد شدن"، فصلنامه علمی-پژوهشی فرایندهای نوین در مهندسی مواد، دوره 2، شماره 3، 43 تا 52، 1387.
[4] H. Ye, “An Overview of the Development of Al-Si-Alloy Based Material for Engine Applications”, Journal of Materials Engineering and Performance, Vol. 12, pp. 288-297, 2003.
[5] S. G. Shabestari & H. Moemeni, “Effect of Copper and Solidification Condition on the microstructure and mechanical properties of Al-Si-Mg alloysˮ, Journal of Materials Processing Technology, Vol. 153-154, pp. 193-198, 2004.
[6] M. S. Prabhudev, T. M. Chandra shekharaiah & S. A. Kori, “Effects of Copper Addition on the Microstructure, Mechanical and High Temperature Wear Behavior of A356 Alloyˮ, International Journal of Advanced Engineering Applications, Vol. 2, Issue 2, pp. 17-23, 2009.
[7] J. A. Taylor, “Iron-containing intermetallic phases in Al-Si based casting alloys”, Procedia Materials Science, Vol. 1, pp. 19–33, 2012.
[8] R. S. Rana, R. Purohit & S. Das, “Reviews on the Influences of Alloying elements on the Microstructure and Mechanical Properties of Aluminum Alloys and Aluminum Alloy Composites”, International JOURNAL OF Science Res. Pub, Vol. 2, No. 6, pp. 1-7, 2012.
[9] T. O. Mbuya, B. O. Odera & S. P. Ng’ang’a, “Influence of Iron on Castability and Properties of Aluminium Silicon Alloys: Literature Review”, International Journal of Cast Metal Researches, Vol. 16, pp. 451-462, 2003.
[10] N. A. Belov, A. A. Aksenov & Dmitry G. Eskin, “Iron in Aluminium Alloys: Impurity and Alloying Element”, Taylor and Fransis, New York, 2002.
[11] C. M. Dinnis, J. A. Taylor & K. Arne, “As-cast Morphology of Iron-Intermetallics in Al–Si Foundry Alloysˮ, Scripta Materialia, Vol. 53, pp. 955-958, 2005.
[12] P. S. Wang, S. L. Lee, C. Y. Yang & J. C. Lin, “Effect of Beryllium and Non-equilibriums Heat Treatment on Mechanical Properties of B319 Alloy with 1.0% Feˮ, Materials Science and Technology, Vol. 20, pp. 539-545, 2004.
[13] S. S. Sreeja Kumari, R. M. Pillai, T. P. D. Rajan & B. C. Pai, “Effects of Individual and Combined Additions of Be, Mn, Ca and Sr on the Solidification Behaviour, Structure and Mechanical Properties of Al–7Si–0.3Mg–0.8Fe Alloy”, Materials Science and Engineering, Vol. 460–461A, pp. 561–573, 2007.
[14] S. Seifeddine & I. L. Svensson, “The Influence of Fe and Mn Content and Cooling Rate on the Microstructure and Mechanical Properties of A380-Die Casting Alloys”, Materials Science and Technology, pp. 27-1, 2009.
[15] K. Liu, X. Cao & X. G. Chen, “Effect of Cooling Rate on Iron-rich Intermetallic Phases in 206 Cast Alloys”, Light Metals, pp. 311-317, 2013.
[16] S. G. Shabestari, “The Effect of Iron and Manganese on the Formation of Intermetallic Compounds in Al-Si Alloysˮ, Materials Science and Engineering, Vol. 383A, pp. 289-298, 2004.
[17] L. Y. Pio, “Effect of T6 Heat Treatment on the Mechanical Properties of Gravity Die Cast A356 Aluminum Alloyˮ, Journal of Applied Science, Vol. 11, pp. 2048-2052, 2011.
[18] C. Villenveuve & F. H. Samuel, “Fragmentation and Dissolution of AlsFeSi Phase uring Solution Heat Treatment of Al-13wt%Si-Fe Alloysˮ, International Journal of Cast Metals Researches., Vol. 12, pp. 145-160, 1999.
[19] ا. اسحاقی، ج. راثی زاده غنی، ح. ر. قاسمی و ر. ض. تقیآبادی، "بررسی اثر عملیات حرارتی محلول سازی بر ریزساختار و خواص سایشی آلیاژ آلومینیم 332"، نشریه دانشکده فنی دانشگاه تهران، دوره 43، شماره 2، 139 تا 148، 1388.
[20] C. H. Caceres, I. L. Svensson & J. A. Taylor, “Strength-Ductility Behavior of Al-Si-Cu-Mg Casting Alloys in T6 Temper”, International Journal of Cast Metals Researches, Vol. 15, pp. 531-543, 2003.
[21] L. Backerud, G. Chai & J. Tamminen, “Solidification Characteristics of Aluminium Alloys: Foundry Alloys”, AFS Skan Aluminium, USA, 1990.
[22] T. Bogdanoff, “The Influence of Copper on an Al-Si-Mg Alloy (A356)-Microstructure and Mechanical Properties”, B.Sc. Thesis, Jonkoping University, 2009.
[23] M. H. Mulazimoglu, A. Zaluska, J. E. Gruzleski & F. Paray, “Electron Microscope Study of Al-Fe-Si Intermetallics in 6201 Aluminum Alloy”, Metallurgical and Materials Transactions, Vol. 27A, pp. 929-936, 1996.
[24] O. Vorren, J. E. Evensen & T. B. Pedersen, “Microstructure and Mechanical Properties of Al-Si (Mg) Casting Alloysˮ, AFS Transaction, Vol. 92, pp. 459-466, 1984.
[25] R. Taghiabadi, H. M. Ghasemi & S. G. Shabestari, “Effect of iron-rich intermetallics on the sliding wear behavior of Al–Si alloys”, Materials Science and Engineering, Vol. 490A, pp. 162–170, 2008.
[26] S. Jacob, “Quality index in predicting of properties of aluminum castings-a reviewˮ, AFS Transaction, Vol. 108, pp. 811–818, 2000.
[27] K. A. Ragab, M. Bournane, A. M. Samuel, A. Al-Ahmari, F. H. Samuel & H.W. Doty, “Mechanical characterisation and quality index of A356-type aluminium castings heat treated using fluidised bed quenching”, Materials Science and Technology, Vol. 29, No. 4, pp. 412-425, 2003.
[28] M. F. Ibrahima, S. A. Alkahtani, Kh. A. Abuhasel & F. H. Samuel, “Effect of intermetallics on the microstructure and tensile properties of aluminum based alloys: Role of Sr, Mg and Be addition”, Materials and Design, Vol. 86, pp. 30–40, 2015.
[29] E. Samuel, A. M. Samuel, H. W. Doty, S. Valtierra & F. H. Samuel, “Intermetallic phases in Al–Si based cast alloys: new perspective”, International Journal of Cast Metals Research, Vol. 27, No. 2, pp. 107-114, 2014.
[30] P. Moldovan, G. Popescu & M. Butu, “Heat Treatment of Al-7Si-0.3Mg alloy previously inoculated with a new type of quaternary master alloy”, U.P.B. Science Bulletin Series, Vol. 69B, No. 2, pp. 91-98, 2007.
[31] Z. MA, A. M. Samuel, F. H. Samuel, H. W. Doty & S. Valtierra, “Effect of Fe content and cooling rate on the impact toughness of cast 319 and 356 aluminum alloy”, AFS Transaction, Vol. 101, pp. 255-265, 2003.
C. H. Caceres, “Microstructure design and heat treatment selection for casting alloys using the Quality Index”, Journal of Materials Engineering and Performance, Vol. 92, pp. 215-221, 2000.
_||_