Dissimilar welding of UNS 2205 duplex stainless steel/AISI 316L austenitic stainless steel by pulsed current GTAW and joint properties evaluation
Subject Areas :رضا نیسی 1 * , مرتضی شمعانیان 2
1 - دانشگاه آراد واحد نجف آباد
2 - عضو هیت علمی دانشگاه صنعتی اصفهان
Keywords:
Abstract :
[1] م. شمعانیان و م رحمتی، "متالورژی جوشکاری و جوشپذیری فولادهای زنگ نزن"، جهاد دانشگاهی واحد صنعتی اصفهان، ص 191-213، بهار 1389.
[2] M. MCguire, “Stainless steels for design engineers”, ASM, pp. 60-80, 2008.
[3] M. Dadfar, M. H. Fathi, F. Karimzadeh, M. R. Dadfar & A. Saatchi, “Effect of TIG welding on corrosion behavior of 316L stainless steel”, Mater Letters, ,Vol. 61, pp. 2343-2346, 2007.
[4] M. Conradi, P. M. Schon, A. Kocijan & M. Jenko, G. J. Vancso, “Surface analysis of localized corrosion of austenitic 316L and duplex 2205 stainless steels in simulated body solutions”, Mater ChemPhys, Vol. 130, pp. 708-713, 2011.
[5] P. D. Teidra & O. Martin, “Effect of welding on the stress corrosion cracking behaviour of prior cold worked AISI 316L stainless steel studied by using the slow strain rate test”, Mater Des, Vol. 49, pp. 103-109, 2013.
[6] M. Yosefiyh, M. Shamanian & A. Saatchi, “Optimization of the pulsed current gas tungsten arc welding (PCGTAW) parameters for corrosion resistance of super duplex stainless steel (UNS S32760) welds using the Taguchi method”, J Alloys Compd, Vol. 509, pp. 782-788, 2011.
[7] L. Chen, H. Tan, Z. Wang, J. Li & Y. Jiang, “Influence of cooling rate on microstructure evolution and pitting corrosion resistance in the simulated heat-affected zone of 2304 duplex stainless steels”, Corrosion Science, Vol. 54, pp. 1585–1591, 2012.
[8] J. Labanowski, “Stress corrosion cracking susceptibility of dissimilar stainless steels welded joints”, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 20, No. 1-2, pp. 255 – 258, 2007.
[9] S. H. Wang, P. K. Chiu, J. R. Yang & J. Fang, “Gamma phase transformation in pulsed GTAW weld metal of duplex stainless steel”, Mater SciEng, Vol. A420, pp. 26-33, 2006.
[10] M. Yosefiyh, M. Shamanian & A. Saatchi, “Influence of Heat Input in Pulsed Current GTXW Process on Microstructure and Corrosion Resistance of Duplex Stainless Steel Welds”, J Iron Steel Res Int, Vol. 18, pp. 65-69, 2011.
[11] H. Sieurin & R. Sandstrom, “Sigma phase precipitation in duplex stainless steel 2205”, Mater SciEng, Vol. A444, pp. 271–276, 2007.
[12] J. Liao, “Nitride Precipitation in Weld HAZs of a Duplex Stainless Steel”, the Iron and Steel Institute of Japan International, Vol. 5, No. 41, pp. 460–467, 2001.
[13] N. Sathirachinda, R. Pettersson, R. Wessman, U. Kivisakk & A. Pan, “Scanning Kelvin probe force microscopy study of chromium nitrides in 2507 super duplex stainless steel-Implications and limitations”, ElectrochimicaActa, Vol. 56, pp. 1792–1798, 2011.
[14] A. J. Ramirez, S. Brandi & J. C. Lippold, “The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels. Metallurgical Transactions A”, Vol. 34A, No. 8, pp. 1575-1597, 2003.
[15] S. Topolska & J. Labanowski, “Effect of microstructure on impact toughness of duplex and superduplex stainless steels”, Vol. 36, No. 2, pp. 142 – 149, 2009.
[16] S. Wang, Q. Ma & Y. Li, “Characterization of microstructure, mechanical properties and corrosion resistance of dissimilar welded joint between 2205 duplex stainless steel and 16MnR”, Mater Des, Vol. 32, pp. 831-837, 2011.