Explaining the component of ecological design in the ecosystem architecture of multi-purpose buildings in Mashhad (Case study: Padide Shandiz)
Subject Areas :
Life Space Journal
HAMID Hamed Sardar
1
,
Saeid Tizghalam Zonouzi
2
,
Shooka Khoshbakht Bahramani
3
1 - Department of architecture , Central Tehran Branch . Islamic Azad university . Tehran . Iran.
2 - Department of Architecture, , Central Tehran Branch, Islamic Azad University, Tehran, Iran.
3 - Department of Architecture,, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Received: 2022-03-18
Accepted : 2022-08-03
Published : 2022-08-23
Keywords:
Ecosystem architecture,
Ecological design component,
multipurpose buildings,
Padide Shandiz,
Abstract :
The science of architecture seeks to discover the category of the environment in various buildings and help to harmonize them with their surroundings. This theme is derived from sustainable development in architecture and their pursuit. One of the new methods, which is based on the idea of minimal impact on the environment and the least use of finite energy resources and seeks a new friendship between man and nature, is ecological design, which is familiarity with its design rules for builders based on this approach is essential. Is. Rules of ecological design in the design stage can be associated with architecture and associated in the form of design in different buildings. Multifunctional buildings as a project stimulating functional development affect all dimensions of a neighborhood or area. This research aims to extract and verify the components of ecological design from the language of space users thinkers and researchers, which uses all three tools to collect data. It is a nested application that combines data collection tools in a qualitative approach and is verified and evaluated in a quantitative approach. First, concepts are extracted and categorized through theoretical foundations. Then the research question is extracted and categorized according to the concepts and definitions are taken from the theoretical foundations. Then, the research question by the concepts and definitions derived from theoretical foundations is increased to 7 questions for a semi-open interview. According to the main theme of the article, he visits the multi-functional complex of Mashhad. Data reduction is done in both cases. Has expertise in this field). The results are compared between the two groups using Originpro software. The results show that from the point of view of space users, the most important factor is the components of respect for people, creating volumes with long-term value and design from details to template with the value (1,000) and the least related to paying attention to site values in design with value. (0.211). In the group of participatory observers, the highest factor share is related to harmony with natural ecosystems, functional independence of design, and attention to site values in design with a value of (1,000), and the lowest factor share is related to equality of human rights and nature with value (0.221). Is. According to the results obtained in the findings section, it was found that the results of inferential statistics and descriptive statistics were different from each other, and to apply the results, inferential statistics should be considered. Users pointed to the components of ecological design. In participatory observers, even in the components with the lowest correlation coefficient, its rate is close to 0.5, which indicates a high correlation rate between the components in their responses. This is not true in factor contribution and regression, and in general, the averages obtained for the two groups are close to each other. In the user group, attention to physical aspects and attention to people and the needs of different groups in space as a flexible element over time It has been an ecosystem architecture, but in the group of participatory observers, attention to climate and space has been given priority over other components in the Shandiz multifunctional complex.After reviewing the results of the responses of two groups of observers who have more expertise and users who have less expertise, it is observed that there is little communication between them and due to a lack of understanding of the concept of ecosystem architecture and ecological design, the results obtained from them can not be trusted. It is better to use the results of participatory observers for design and development-stimulating projects. Also, due to the existence of two groups of the population, the results are more accurate and valid. The principles of ecological design and attention to ecosystem architecture with the use of various components have been considered for many years in the process of designing and implementing different types of buildings with uses, educational, residential, commercial, cultural, etc. in developed countries. Their multifunctional buildings have been less studied as a contemporary product in this country. Ecological design can improve the quality of the building in terms of environment, refine and verify the components of ecological design compared to Shandiz's multifunctional building by preserving various ecosystems.
References:
آرین، سمیه و فرجپور، مریم. (1396). تاثیر بام سبز و نمای سبز بر افزایش کیفیت زیستمحیطی و کاهش مصرف انرژی در شهر تهران،سومین همایش بینالمللی معماری عمران وشهرسازی در آغاز هزاره سوم، 1-12.
پیمان، سیدحسین. (1386). ویژگیهای مسکن خانوارهای شهری در طبقههای درآمدی، فصلنامه علمی اقتصاد مسکن، شماره 41، 87-71.
پورمحمدی، محمدرضا. (1382). برنامهریزی مسکن. تهران: انتشارات سمت.
تورانی، احمدرضا. (1387). آینده فناوری ذرات بنیادین در معماری. معماری و ساختمان، (16).
جوادی نوده، مهسا و شاهچراغی، آزاده و عندلیب، علیرضا. (1399). ارزیابی معماری اکولوژیکی متاثر از تعامل محیط انسانساخت با طبیعت در مناطق سردسیر نمونه موردی: دوخانه تاریخی در اردبیل. 10(4)، 1-16.
حاجی قنبری، علی و سمائی، فرزاد و کرمنیا، محمد. (1395). ترکیب معماری اکولوژیکی و فناوریهای نو در کاهش مصرف انرژی در مناطق کوهستانی نمونه موردی: کلانشهر تبریز. ماهنامه شباک، 2(2)، 13-21.
شماعی، علی و پوراحمد، احمد (1384). بهسازی و نوسازی شهری از دیدگاه علم جغرافیا. تهران: انتشارات دانشگاه تهران.
شریفی، عبدالرضا و آذرپیرا، مرتضی. (1394). بررسی الگو گیری از محیطزیست طبیعی در معماری شهری و استفاده از نظریه بیوفیلیکا (شهردر باغ) و مقایسه آن با رویکرد شهرسازی در مکتب اصفهان. دومین کنفرانس ملی معماری و منظرشهری پایدار، 1-12.
حیدری، شاهین. (1381). دمای آسایش حرارتی. مردم شهر تهران، فصلنامه هنرهای زیبا، (38)، 14-5.
خوشفر، غلامرضا. (1374). کاربرد شاخصهای اجتماعی در توسعه مسکن. مجموعه مقالات دومین سمینار سیاستهای توسعه مسکن در ایران، جلد 2، تهران: وزارت مسکن و شهرسازی، سازمان ملی زمین و مسکن.
حبیبی، سید محسن. (1379). جامعه مدنی وحیات شهری. مجله هنرهای زیبا، (7)، 33-22.
جعفری خداوردی، ناصر و یوسفی، عاطفه. (1396). معماری بیوفیلیک و توسعه پایدار. انتشارات سیمای دانش، چاپ اول، تهران، ایران.
رهنما، محمدرحیم و رزاقیان، فرزانه. (1395). تحلیل ساختمانهای بلند مسکونی با تاکید بر نظریه شهر اکولوژیک در حوزه جنوب غرب کلانشهر مشهد. دانشکده ادبیات و علوم انسانی، دانشگاه فردوسی مشهد.
زبردست، اسفندیار. (1376). مقایسه سیاستهای مسکن. کنفرانس اسکان بشر هابیتات یک و دو، تهران، انتشارات سازمان ملی زمین و مسکن، وزارت مسکن و شهرسازی.
زنجانی، حبیبالله. (1371). جمعیت و توسعه، تهران. مرکز مطالعات و تحقیقات شهرسازی و معماری ایران.
زهری، سارا. (1396). مقایسه تطبیقی مولفههای معماری بومی با اصول و معیارهای طراحی اکولوژیک. کنفرانس ملی دانش و فناوری نوین در علوم مهندسی در عصر تکنولوژی، 1-8.
ضرب استجابی، فاطمه. (1397). طراحی مجتمع تجاری-تفریحی جزیره قشم با رویکرد معماری طبیعتگرا و همساز با اقلیم. پایاننامه کارشناسی ارشد، دانشگاه پیام نور استان هرمزگان، مرکز پیام نور بندر عباس.
کولیوند، پوریا و کولیوند، طاهره. (1394). بررسی عملکرد حرارتی پوششهای گیاهی در فضای باز شهری نمونه موردی: بندر امام خمینی. کنفرانس بینالمللی عمران، معماری و زیرساختهای شهری، 1-8.
محزون، فاطمه. (1398). طراحی یک دستگاه آپارتمان چهار طبقه مسکونی با رویکرد معماری اکولوژیک در منطقه 11 شهر تهران. موسسه آموزش عالی اشراق، دانشکده حقوق.
محمدپور، علی و فندرسکی، فرشته. (1392). بررسی راهکارهای اقلیمی معماری اکولوژیک در ایران. اولین کنفرانس ملی معماری و فضاهای شهری پایدار.
مدیرروستا، سما و رستمی، فاطمه. (1393). ایجاد ساختمانهای سبز بر اساس قواعد طراحی اکولوژیک و فواید آن در نگهداشت انرژی. چهارمین کنفرانس بینالمللی رویکردهای نوین در نگهداشت انرژی، 1-14.
منصوری، سید امیر. (1389). چیستی منظر شهری. مجله علمی–ترویجی منظر، 9(2)، 33-30
نیکولتی، مانفردی. (1391). معماری اکوسیستمی، تعادل زیستمحیطی در شهر. ترجمه: سعید تیزقلم زنوزی، تهران: فضا.
Bergen, Scott. D., Bolton, Susan. M., Fridley, James. L. (2001). Design principles for ecological engineering. Ecological Engineering, 18, 201–210.
Blonder, Benjamin. & Both, Sabine & Jodra, Miguel& Xu, Hao & Fricker, Mark & Matos, Ilaíne.S & Majalap, Noreen & Burslem, David. F.R.P & Teh, Yit.Arn & Malhi, Yadvinder. (2020). Linking functional traits to multiscale statistics of leaf venation networks, New Phytol, 228 (6), 1796–1810.
Egercioglu, Yakup & Yilmaz, Salih & Cete, Mehmet & Cupi, Romjana. (2016). Resident’s Satisfaction to Evaluate Residential Environment before Urban Regeneration: Kizilay Neighborhood, Izmir, Environment-Behaviour Proceedings Journal, 1(2):145-155.
Gong, Rongpeng & Xu, Xia & Tian, X & Jiang, Honglei & Li, X & Guan, Mengxi. (2018). Hydraulic architecture characteristics and drought adaption strategies for three Caragana genus species, Acta Ecol. Sin. 38 (14), 4984–4993.
Holmgren, David. (2002). Permaculture: Principles & Pathways beyond Sustainability. Holmgren Design Services, 286 pages.
Huang, Tongli & Tang, Lixia & Chen, Long & Zhang, Qiaoyan. (2019). Root architecture and ecological adaptation strategy of three shrubs in karst area, SSWC, 17 (1), 89–94.
Ibrahim, Hatem. Galal. A. (2015). Regeneration of Sustainability in Contemporary Architecture: Approach Based on Native Function and Activities to Strengthen Identity, Social and Behavioral Sciences, 216(6), 800-809.
Jin, Mingyue & Jiang, Feng & Jin, Guangze & Liu, Zhili. (2018). Variations of specific leaf area in different growth periods and canopy positions of Betula platyphylla at different ages, Sci. Silva. Sin, 54 (9), 18–26.
Kenworth, Jeffrey. R. (2006). The Eco- City: Ten Key Transport and Planning Dimensions for Sustainable City Development, Environment and Urbanization, 18 (1): 67-85.
Madiha Syed & Eduardo B. Fernandez. (2018). A reference architecture for ecosystem applic1ations for Container modeling, Conference: the 13th International Conference, 1-7.
McLennan, Jason.F. (2004). The Philosophy of Sustainable Design. Ecotone Publishing.
McDonough, William & Braungart, Micheal. (1992). The Hannover Principles: Design for sustainability. Prepared for Expo 2000, The World’s Fair, Germany. http://www .mcdonough.com/principles.pdf. Last accessed November 16, 2009.
Mottaeval, Angela., Kalinina, Natalya., Kuzmina, Anna., Olenina, Olga., Glashev, Aznaur. (2019). Ecological aspects of modern city-planning, Web of Conferences, 91, 1-6.
Özeler Kanan, Nilay. (2010). Ekolojik Mimarlıkta Mimari Bütünleşmenin 1990 Yılı Sonrası, Ken Yeang Ve Norman Foster'ın Yapıları Özelinde İncelenmesi. Yüksek Lisans Tezi, Eskisehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir, S. 4-12.
Parlak Bicer, Özlem. (2019). Comparison of a Historical and a Modern Building According to Ecological Criteria. Eurasian Journal of Civil Engineering and Architecture, 3(1): 27- 48.
Parlak Bicer, Özlem & Yağmur, Yasemin & Bektas, Ibrahim. (2020). Günümüz Ekolojik Tasarim Kriterlerinin İncelenerek Tarihi Yapılardaki Ekolojik İzler İle Karşılaştırılması: Talas-Kayseri Örnek Alanı. Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Mimarlık Anabilim Dalı, Kayseri, 8(3), 162-185.
Shahbazi, Mehrdad & Yeganeh, Mansour & Bamanian, Mohammadreza. (2020). Meta-analysis of environmental vitality factors in open spaces. Motaleate Shahri, 9(34), 61-76.
Su, Liang & Song, Ting. Qing & Du, Hu & Zeng, Fu.Ping & Wang, Hua & Peng, Wan. Xia & Zhang, Fang & Zhang, Jia.Yong. (2018). Biomass and morphological characteristics of fine roots and their affecting factors in different vegetation restoration stages in depressions between karst hills, J. Appl. Ecol, 29 (3), 783–789.
Todd, John & Brown, Erica. J. G & Wells, Erik. (2003). Ecological design applied. Ecological Engineering, 20, 421–440.
Shu-Yang, Fan & Freedman, Bill & Cote, Raymond. (2004). Principles and practice of ecological design. Environmental Review, 12, 97–112.
Van der Ryn, Sim & Cowan, Stuart. (1996). Ecological Design. Washington, DC: Island Press.
Yilmaz, Mustafa & Bakis, Adem. (2015). Sustainability in Construction Sector, Social and Behavioral Sciences, 195(3), 2253–2262.
Yushanjiang, Ayinuer & Zhang, Fei & Leong Tan, Mou. (2021). Spatial-temporal characteristics of ecosystem health in Central Asia, International Journal of Applied Earth Observation and Geoinformation, 105, 1-10.
Zhong, Q.L & Liu, L.B & Xu, X & Yang, Y & Guo, Y.M & Xu, H.Y & Cai, X.L & Ni, J. (2018). Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China, Chin. J. Plan. Ecolo, 42 (5), 562–572.
_||_