Analysis of the Role of Sponge City Components in Enhancing Urban Resilience to Flood Hazards (Case Study: Zanjan City)
Hossein Tahmasebi Moghaddam
1
(
)
Majid Hazraty
2
(
PhD Candidate in Geography and Urban Planning, Faculty of Humanities, University of Zanjan, Zanjan, Iran.
)
Keywords: Resilience, Sponge City, Hazards, Flood, Zanjan.,
Abstract :
Rapid urban development and the increase in impervious surfaces in Zanjan City, as in many other urban areas, have reduced resilience to flood hazards and placed significant strain on traditional drainage systems. Given the increasing trend of extreme weather events and their disproportionate impacts on vulnerable communities, purely engineering-based approaches are no longer sufficient to address the challenges posed by climate change. In this context, the principles of sponge cities—offering multifunctional environmental, ecological, social, and economic benefits—are considered effective tools for enhancing urban resilience against floods and other climate-related hazards.This article employs an analytical-exploratory method to examine the role of sponge city components in enhancing urban resilience to flood hazards in Zanjan City. Data collection was carried out through field surveys and library research. The statistical population was selected using a fuzzy Delphi analysis involving 30 urban planning experts from academic institutions. Data analysis was conducted using Structural Equation Modeling (SEM) and path analysis in SmartPLS software.The results indicate that the highest factor loadings among sponge city indicators are: rainwater infiltration into the ground (0.911), rainwater filtration (0.962), reduction of peak river flow (0.922), and preservation of natural hydrological processes (0.936). Regarding urban resilience, the highest factor loadings correspond to population at risk (0.979), ratio of large to small businesses (0.919), shelter capacity (0.979), and urban environmental health (0.974). Moreover, based on the structural equation model, green spaces, restoration of natural waterways, and permeable pavements have the most significant and positive impacts on urban resilience. Additionally, social and institutional-infrastructural resilience dimensions exhibit the highest levels of influence
طهماسبی مقدم، حسین؛ احد نژادروشتی، محسن؛ حیدری، محمد تقی؛ و شغلی, علیرضا . (1400). تبیین عوامل مؤثر بر تابآوری اجتماعی در برابر مخاطرات بیولوژیکال با تأکید بر کووید -19 (مطالعه موردی: شهر زنجان). جغرافیا و مخاطرات محیطی. 10(1)، 1-19. doi: 10.22067/geoeh.2021.67234.0
احدنژاد روشتی، محسن؛ طهماسبی مقدم، حسین؛ حیدری، محمد تقی(1401). تحلیل عوامل مؤثر برافزایش تابآوری جوامع شهری در برابر همهگیری کرونا با رویکرد مدیریت بحراناجتماعمحور(مطالعه موردی: شهر زنجان). آمایش محیط. 15(59). 159-186.
ملک حسینی، امید .(1399) مخاطرات طبیعی در ایران، رشد اموزش جغرافیا، 34(3).
1. Sun, Y., Deng, L., Pan, S.-Y., Sable, S., & Shah, K. 2020. Integration of green and gray infrastructure for sponge city: water and energy nexus. Water-Energy Nexus, 3 (n.d), 29 30. doi.org/10.1016/j.wen.2020.03.003
2. Zhao, L., Lee, X., Smith, R.B. and Oleson, K. 2014. Strong contributions of local background climate to urban heat islands. Nature, [online] 511(7508), pp.216–219. Cited 2 June 2024. Available at: https://doi.org/10.1038/nature13462
3. European Environmental Agency. 2021. Water resources across Europe — confronting water stress: an updated assessment — European Environment Agency. [online] Cited 18 March 2024. Available at: https://www.eea.europa.eu/publications/water-resources across-europe-confronting.
4. Twyman, B. (2025). Sponge Cities: A Comparison of Urban Stormwater and Flood Management Programs in China and the United States (Master's thesis, Tufts University).
5. Ix, F. M., & George, E. H. (2022). Review on sponge city construction for flood management. Sustainability, Agri, Food and Environmental Research, 10(1), 109-117.
6. Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., & Viklander, M. (2015). SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban water journal, 12(7), 525-542.
7. Dresden (2024). Environmental protection. [online] www.dresden.de. Cited 24 May 2024. Available at: https://www.dresden.de/en/living/environment/Environmental Protection.php
8. Liang, C., Zhang, X., Xia, J., Xu, J., & She, D. (2020). The effect of sponge city construction for reducing directly connected impervious areas on hydrological responses at the urban catchment scale. Water, 12(4), 1163.
9. Cities Are Becoming More Like Sponges - Reasons to be Cheerful, accessed June 12, 2025, https://reasonstobecheerful.world/sponge-cities-china-climate-change-resilience/
10. Optimize sponge cities for floods | ENVI-met from One Click LCA, accessed June 12, 2025, https://oneclicklca.com/en/resources/articles/microclimate-modeling-to-optimize-sponge-cities-for-flood-resilience
11. Cities Are Becoming More Like Sponges - Reasons to be Cheerful, accessed June 12, 2025, https://reasonstobecheerful.world/sponge-cities-china-climate-change-resilience/
12. What is a sponge city? - Internet Geography, accessed June 12, 2025, https://www.internetgeography.net/what-is-a-sponge-city/
13. Uzoqov, B. (2024). Application of Sponge City concept to address the issues of stormwater management in urban areas: Prohlis, Dresden.
14. Network, A. C. C. C. R. (2013). ACCCRN city projects. Bangkok: Asian Cities Climate Change Resilience Network (ACCCRN).
15. Asian Cities Climate Change Resilience Network. 2011. Surat City Resilience Strategy, The Rockefeller Foundation, Surat Municipal Corporation, The Southern Gujarat Chamber of Commerce and Industry, TARU Leading Edge.
16. Environmental Protection Agency. (2016). Climate Change Indicators: Weather and Climate.
17. Li, H., Ishidaira, H., Wei, Y., Souma, K., & Magome, J. (2022). Assessment of sponge city flood control capacity according to rainfall pattern using a numerical model after muti-Source validation. Water, 14(5), 769.
18. Jardine, A., & Long, J. (2014). Synopsis of climate change. Gen. Tech. Rep. PSW-GTR-247. Albany, CA: US Department of Agriculture, Forest Service, Pacific Southwest Research Station: 71-81. Chap. 1.4, 247, 71-81.
19. Annex II, I. P. C. C. (2022). Glossary [Möller, VR van Diemen, JBR Matthews, C. Méndez, S. Semenov, JS Fuglestvedt, A. Reisinger. Climate change, 2897-2930.
20. Li, H., Ishidaira, H., Wei, Y., Souma, K., & Magome, J. (2022). Assessment of sponge city flood control capacity according to rainfall pattern using a numerical model after muti-Source validation. Water, 14(5), 769.
21. Yu, K. (2015). “Sponge City”: Theory and Practice. City Planning Review. 39 (6): 26–36. Retrieved 2020-12-15.
22. Wu, Y. G. (2016). Sponge City Design: Concept, Technology & Case Study. Jiangsu. Phoenix Science Press.
23. Citaristi, I. (2022). World Meteorological Organization—WMO. In The Europa Directory of International Organizations 2022 (pp. 399-404). Routledge.
24. Environmental Protection Agency. (2016). Climate Change Indicators: Weather and Climate.
25. Optimize sponge cities for floods | ENVI-met from One Click LCA, accessed June 12, 2025, https://oneclicklca.com/en/resources/articles/microclimate-modeling-to-optimize-sponge-cities-for-flood-resilience
26. Nguyen, T. T., Ngo, H. H., Guo, W., Wang, X. C., Ren, N., Li, G., ... & Liang, H. (2019). Implementation of a specific urban water management-Sponge City. Science of the Total Environment, 652, 147-162.
27. Xia, J., Zhang, Y., Xiong, L., He, S., Wang, L., & Yu, Z. (2017). Opportunities and challenges of the Sponge City construction related to urban water issues in China. Science China Earth Sciences, 60, 652-658.
28. Zevenbergen, C., Fu, D., & Pathirana, A. (2018). Transitioning to sponge cities: Challenges and opportunities to address urban water problems in China. Water, 10(9), 1230.
29. Yu, K. (2017). Green infrastructure through the revival of ancient wisdom. Bulletin of the American Academy of Arts and Sciences, 70(4), 35-39.
30. Li, L., Li, C., Wang, H., & Xu, F. (2024). Precondition Study of a Sponge City: Comprehensive Assessment of the Vulnerability of an Urban Rainwater System. Sustainability, 16(10), 3897.
31. Wang, J., Zhou, L., Han, P., & Li, G. (2020). The impact of urbanization and LID technology on hydrological effect. Journal of Coastal Research, 104(SI), 14-22.
32. One Click LCA. (2025, June 12). Optimize sponge cities for floods | ENVI-met. Retrieved from https://oneclicklca.com/en/resources/articles/microclimate-modeling-to-optimize-sponge-cities-for-flood-resilience
33. Deng, Y., Deng, J., & Zhang, C. (2022). Sponge City and Water Environment Planning and Construction in Jibu District in Changde City. Sustainability, 15(1), 444.
34. Cities Are Becoming More Like Sponges - Reasons to be Cheerful, accessed June 12, 2025, https://reasonstobecheerful.world/sponge-cities-china-climate-change-resilience/
35. Szeląg, B., Łagód, G., Musz-Pomorska, A., Widomski, M.K., Stránský, D., Sokáč, M., Pokrývková, J. and Babko, R. 2022. Development of Rainfall-Runoff Models for Sustainable Stormwater Management in Urbanized Catchments. Water, 14(13), p.1997. doi: Cited 14 July 2024. Available at: https://doi.org/10.3390/w14131997
36. Helmreich, B. 2021. Rainwater Management in Urban Areas. Water, 13(8), p.1096. doi:https://doi.org/10.3390/w13081096.
37. Köster, S., Hadler, G., Opitz, L. and Thoms, A. 2023. Using Stormwater in a Sponge City as a New Wing of Urban Water Supply—A Case Study. Water, 15(10), p.1893. doi: Cited 1 May 2024. Available at: https://doi.org/10.3390/w15101893
38. Yang, D., Zhao, X. and Anderson, B.C. 2022. Integrating Sponge City Requirements into the Management of Urban Development Land: An Improved Methodology for Sponge City Implementation. Water, 14(7), p.1156. Cited 18 July 2024. Available at: https://doi.org/10.3390/w14071156
39. Yin, D., Chen, Y., Jia, H., Wang, Q., Chen, Z., Xu, C., Li, Q., Wang, W., Yang, Y., Fu, G. and Chen, A.S. 2021. Sponge city practice in China: A review of construction, assessment, operational and maintenance. Journal of Cleaner Production, 280(280 (2021) 124963), p.124963. Cited 04 July 2024. Available at: https://doi.org/10.1016/j.jclepro.2020.124963
40. Guan, X., Wang, J. and Xiao, F. 2021. Sponge city strategy and application of pavement materials in sponge city. Journal of Cleaner Production, 303(303 (2021) 127022), p.127022. doi:https://doi.org/10.1016/j.jclepro.2021.127022.
41. Li, H., Ding, L., Ren, M., Li, C. and Wang, H. 2017. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water, 9(9), p.594. doi: Cited 8 March 2024. Available at: https://doi.org/10.3390/w9090594
42. Nguyen, T.T., Ngo, H.H., Guo, W. and Wang, X.C. 2020. A new model framework for sponge city implementation: Emerging challenges and future developments. Journal of Environmental Management, 253(253 (2020) 109689), p.109689. doi: Cited 22 June 2024. Available at: https://doi.org/10.1016/j.jenvman.2019.109689
43. Nguyen, T.T., Ngo, H.H., Guo, W., Wang, X.C., Ren, N., Li, G., Ding, J. and Liang, H. 2019. Implementation of a specific urban water management - Sponge City. Science of The Total Environment, 652(652 (2019) 147–162), pp.147–162. doi: Cited 22 June 2024. Available at: https://doi.org/10.1016/j.scitotenv.2018.10.168