Nonlinear Hybrid Bistable Vibration-Energy-Harvester Modeling Considering Magnetostrictive and Piezoelectric Behaviors
Subject Areas : Computational MechanicsKamran Niazi 1 , Mohammad-Javad Kazem Zadeh Parsi 2 * , Mehrdad Mohammadi 3
1 - Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 - Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
3 - Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Keywords: Lumped parameter, Runge-Kutta method, Hybrid Energy harvesting, Harmonic balance method, Time and frequency responses,
Abstract :
The present study investigates a novel two degrees of freedom (2DOF) modeling of hybrid-bistable vibration energy harvester (VEH) considering nonlinear magnetic interaction and elastic magnifier to improve the efficiency and expand the action bandwidth. The main part of harvesting mechanism is a composite cantilever beam consists of three layers of magnetostrictive, piezoelectric and a metallic core with internal damping. Such a novel architecture generates more electrical power and operates at larger bandwidth than common piezoelectric or magnetostrictive energy harvesting systems. In the present work, a coupled 2DOF model is developed to investigate the vibration behavior and energy harvesting rate of the harvester. The harmonic balance method is used to obtain the frequency responses and then the Runge-Kutta method is utilized to calculate the dynamic responses. A parametric study is done to investigate the effects of the key features of the harvester such as magnets distances, base acceleration level and excitation frequency on the rate of electricity generation.
[1] Beeby S. P. et al., 2007, A micro electromagnetic generator for vibration energy harvesting, J. Micromechanics microengineering, 17(7): 1257.
[2] Liu H., Li W., Sun X., Cong C., Cao C., Zhao Q., 2021, Enhanced the capability of magnetostrictive ambient vibration harvester through structural configuration, pre-magnetization condition and elastic magnifier, J. Sound Vib., 492: 115805.
[3] Andò B., Baglio S., Bulsara A. R., Marletta V., Pistorio A., 2017, Investigation of a nonlinear energy harvester, IEEE Trans. Instrum. Meas., 66(5): 1067-1075.
[4] Tang L., Yang Y., Soh C. K., 2012, Improving functionality of vibration energy harvesters using magnets, J. Intell. Mater. Syst. Struct., 23(13): 1433-1449.
[5] Ferrari M., Ferrari V., Guizzetti M., Andò B., Baglio S., Trigona C., 2010, Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters, Sensors Actuators A Phys., 162(2): 425-431.
[6] Karami M. A., Inman D. J., 2011, Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems, J. Sound Vib., 330(23): 5583-5597.
[7] Kim P., Seok J., 2014, A multi-stable energy harvester: Dynamic modeling and bifurcation analysis, J. Sound Vib., 333(21): 5525–5547.
[8] Jiang J., Liu S., Zhao D., Feng L., 2019, Broadband power generation of piezoelectric vibration energy harvester with magnetic coupling, J. Intell. Mater. Syst. Struct., 30(15): 2272-2282.
[9] Nguyen M. S., Yoon Y. J., Kim P., 2019, Enhanced broadband performance of magnetically coupled 2-DOF bistable energy harvester with secondary intrawell resonances, Int. J. Precis. Eng. Manuf. Technol., 6(3): 521-530.
[10] Wang L., Chen R., Ren L., Xia H., Zhang Y., 2019, Design and experimental study of a bistable magnetoelectric vibration energy harvester with nonlinear magnetic force scavenging structure, Int. J. Appl. Electromagn. Mech., 60(4): 489-502.
[11] Kianpoor A., Jahani K., 2019, Modeling and analyzing of energy harvesting from trapezoidal piezoelectric beams, Iran. J. Sci. Technol. Trans. Mech. Eng., 43(1): 259-266.
[12] Heshmati M., Amini Y., 2020, An electromechanical finite element model for new CNTs-reinforced harvesters subjected to harmonic and random base excitations, Iran. J. Sci. Technol. Trans. Mech. Eng., 44(1): 163-181.
[13] Rezaei M., Talebitooti R., Friswell M. I., 2019, Efficient acoustic energy harvesting by deploying magnetic restoring force, Smart Materials and Structures, 28(10): 105037.
[14] Rezaei M., Talebitooti R., 2022, Investigating the performance of tri-stable magneto-piezoelastic absorber in simultaneous energy harvesting and vibration isolation, Applied Mathematical Modelling, 102: 661-693.
[15] Rezaei M., Talebitooti R., Rahmanian S., 2019, Efficient energy harvesting from nonlinear vibrations of PZT beam under simultaneous resonances, Energy, 182: 369-380.
[16] Aladwani A., Arafa M., Aldraihem O., Baz A., 2012, Cantilevered piezoelectric energy harvester with a dynamic magnifier, J. Vib. Acoust., 134,(3): 31004.
[17] Vasic D., Costa F., 2013, Modeling of piezoelectric energy harvester with multi-mode dynamic magnifier with matrix representation, Int. J. Appl. Electromagn. Mech., 43(3): 237-255.
[18] Wang G. Q., Liao W. H., 2016, A bistable piezoelectric oscillator with an elastic magnifier for energy harvesting enhancement, J. Intell. Mater. Syst. Struct., 28(3): 392-407.
[19] Wang G., Liao W. H., Yang B., Wang X., Xu W., Li X., 2018, Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier, Mech. Syst. Signal Process., 105: 427-446.
[20] Bernard B. P. Mann B. P., 2018, Increasing viability of nonlinear energy harvesters by adding an excited dynamic magnifier, J. Intell. Mater. Syst. Struct., 29(6): 1196-1205.
[21] Liu H., Cong C., Cao C., Zhao Q., 2020, Analysis of the key factors affecting the capability and optimization for magnetostrictive iron-gallium alloy ambient vibration harvesters, Sensors, 20(2): 401.
[22] Ueno T., Yamada S., 2011, Performance of energy harvester using iron--gallium alloy in free vibration, IEEE Trans. Magn., 47(10): 2407-2409.
[23] Kita S., Ueno T., Yamada S., 2015, Improvement of force factor of magnetostrictive vibration power generator for high efficiency, J. Appl. Phys., 117(17): 17B508.
[24] Fang Z. W., Zhang Y. W., Li X., Ding H., Chen L. Q., 2018, Complexification-averaging analysis on a giant magnetostrictive harvester integrated with a nonlinear energy sink, J. Vib. Acoust., 140(2).
[25] Ahmed U., Jeronen J., Zucca M., Palumbo S., Rasilo P., 2019, Finite element analysis of magnetostrictive energy harvesting concept device utilizing thermodynamic magneto-mechanical model, J. Magn. Magn. Mater., 486: 165275.
[26] Cao S., Liu L., Zheng J., Pan R., Song G., 2019, Modeling and Analysis of Galfenol Nonlinear Cantilever Energy Harvester with Elastic Magnifier, IEEE Trans. Magn., 55(6): 1-5.
[27] Zhang Y. W., Gao C. Q., Zhang Z., Zang J., 2021, Dynamic analysis of vibration reduction and energy harvesting using a composite cantilever beam with Galfenol and a nonlinear energy sink, Int. J. Appl. Mech., 13(08): 2150089.
[28] Liu H., Zhao L., Chang Y., Cong C., 2021, Design and characteristic analysis of magnetostrictive bistable vibration harvester with displacement amplification mechanism, Energy Convers. Manag., 243: 114361.
[29] Goudarzi M., Niazi K., Besharati M. K., 2013, Hybrid energy harvesting from vibration and temperature gradient by PZT and PMN-0.25 PT ceramics, Mater. Phys. Mech., 16(1): 55.
[30] Wang H., Tang L., Guo Y., Shan X., Xie T., 2014, A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms, J. Zhejiang Univ., 15,(9): 711-722.
[31] Sengha G. G., Kenfack W. F., Siewe M. S., Tabi C. B., Kofané T. C., 2020, Dynamics of a non-smooth type hybrid energy harvester with nonlinear magnetic coupling, Commun. Nonlinear Sci. Numer. Simul., 90: 105364.
[32] Jahanshahi H., Chen D., Chu Y. M., Gómez-Aguilar J. F., Aly A. A., 2021, Enhancement of the performance of nonlinear vibration energy harvesters by exploiting secondary resonances in multi-frequency excitations, Eur. Phys. J. Plus, 136(3): 1-22.
[33] Fang S., Xing J., Chen K., Fu X., Zhou S., Liao W. H., 2021, Hybridizing piezoelectric and electromagnetic mechanisms with dynamic bistability for enhancing low-frequency rotational energy harvesting, Appl. Phys. Lett., 119(24): 243903.
[34] Li X., Li Z., Liu B., Zhang J., Zhu W., 2022, Numerical research on a vortex shedding induced piezoelectric-electromagnetic energy harvester, J. Intell. Mater. Syst. Struct., 33(1): 105-120.
[35] Mihankhah A., Khoddami Maraghi Z., Ghorbanpour Arani A., Niknejad S., 2022, Magneto-Rheological Response in Vibration of Intelligent Sandwich Plate with Velocity Feedback Control, Journal of Solid Mechanics, 14,(4): 430-446.
[36] Miraliyari O., Jafari Mehradadi S., Najafizadeh M. M., 2023, Nonlinear Free Vibration Analysis of Functionally Graded Sandwich Beam with Magnetorheological Fluid Core Using Timoshenko Beam Theory, Journal of Solid Mechanics, 15(2): 120-143.
[37] Niazi K., Kazemzadeh-Parsi M. J., Mohammadi M., 2022, Nonlinear Dynamic Analysis of Hybrid Piezoelectric-Magnetostrictive Energy-Harvesting Systems, Journal of Sensors, doi:10.1155/2022/8921779.
[38] Erturk A., Inman D. J., 2008, On mechanical modeling of cantilevered piezoelectric vibration energy harvesters, J. Intell. Mater. Syst. Struct., 19(11): 1311-1325.
[39] Cao S., et al., 2018, Modeling and analysis of Galfenol cantilever vibration energy harvester with nonlinear magnetic force, AIP Adv., 8(5): 56718.
[40] Cao S., et al., 2015, Dynamic characteristics of Galfenol cantilever energy harvester, IEEE Trans. Magn., 51(3): 1-4.
[41] Paswan B., Singh P., Sanjeev A. Sahu, 2023, Mathematical Study for the Rayleigh Wave Propagation in a Composite Structure with Piezoelectric Material, Journal of Solid Mechanics, 15(2): 144-159.
[42] Sobamowo M.G., 2022, Analysis of Nonlinear Vibration of Piezoelectric Nanobeam Embedded in Multiple Layers Elastic Media in a ThermoMagnetic Environment Using Iteration Perturbation Method, Journal of Solid Mechanics, 14(2): 221-251.
[43] Shu S., 2012, Dynamic modeling and analysis of a bistable piezoelectric cantilever power generation system, Acta Phys. Sin, 61(21): 1-12.
[44] Karkar S., Cochelin B., and Vergez C., 2014, A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems, J. Sound Vib., 333(12): pp. 2554–2567.