Cold Stress and Strategies to cope with it in Crops
Subject Areas : Environmental managment
Esmaeil Gholinezhad
1
*
,
رضا درویش زاده
2
1 - Associate Professor, Department of Agricultural Sciences, Payame Noor University, Tehran, Iran. *(Corresponding Author)
2 - Professor, Department of Plant Production and Genetics, Urmia University, Urmia, Iran.
Keywords: Avoidance, Cold tolerance mechanism, Osmotic potential, Stress, Tolerance.,
Abstract :
Background and Objective: Cold stress is one of the harmful abiotic stresses and geographically limits the performance of plants. Adaptation to cold is a process that causes resistance to cold stress in temperate plants. Various structural and morphological changes are involved in this process. Enzymatic and non-enzymatic factors also play a role in cold adaptation. Accumulation of bioactive components, biosynthesis of phytohormones, ionic balance, osmolyte accumulation (compatible solutes) and changes in nutrient absorption, root system modification and systemic resistance are some of the new researches that are considered in this review. The purpose of this article is to review scientific research related to the effects, management and control of cold stress in agricultural plants.
Material and Methodology: The present article is a review paper that has been prepared by searching for related articles in reputable databases (Google Scholar, Web of Science, PubMed, Scopus, SID). Its aim is to investigate the effects, mechanisms of tolerance, research methods, important measurable traits, and management and control of cold stress.
Findings: Cold and freezing, which occur at temperatures below 15°C and 0°C, respectively, are both of the most important abiotic stresses that affect plant productivity by reducing germination, seedling abnormality, reduced leaf expansion, wilting, leaf chlorosis and necrosis, and damage to reproductive organs. In addition, the cold changes the water regime, distribution of mineral nutrients, photosynthesis and respiration rate, decreases fruit formation, increases flower shedding and pollen tube deviation, which ultimately leads to a decrease in plants productions. Cold stress causes a decrease in photosynthesis by destroying chlorophyll and reducing the quantum efficiency of photosystem 2. Cold also increases the content of malondialdehyde, total soluble protein, electrolyte leakage, peroxidase activity, reactive oxygen species and protein degradation. The main adverse effect of cold stress in plants is damage to the plasma membrane due to dehydration caused by cold stress. In general, cold stress leads to the loss of membrane integrity, which results in solute leakage.
Discussion and Conclusion: Plants respond to cold stress through different mechanisms, such as positive regulation of the expression of genes related to cold adaptation, such as genes encoding dehydrin, cold-regulated proteins, increasing the stability of the cell membrane by accumulating sugars and antifreeze proteins such as dehydrins, modifying the lipid composition for increasing the ratio of unsaturated to saturated fatty acids, increasing some plant hormones such as salicylic acid, jasmonic acid, ethylene and abscisic acid, increasing the activity of antioxidants, accumulation of compatible solutes such as amino acids, sugars, carbohydrates, proline and glycine. Betaine (nitrogen compounds with low molecular weight) respond as osmotic regulators, changing the amount of nutrients and increasing the production of secondary metabolites.
1. Etesami, H. (2018). Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agriculture, Ecosystems & Environment, 253, 98-112.
2. Mumtaz, M. Z., Ahmad, M., Mehmood, K., Sheikh, A. S., Malik, A., Hussain, A., et al. Role of plant growth-promoting rhizobacteria in combating abiotic and biotic stresses in plants. Microbial BioTechnology for Sustainable Agriculture Volume 1: Springer; 2022. p. 43-104.
3. Kumar, S., Sharma, S. K., Thakral, S. K., Bhardwaj, K. K., Jhariya, M. K., Meena, R. S., et al. (2022). Integrated nutrient management improves the productivity and nutrient use efficiency of Lens culinaris Medik. Sustainability, 14 (3), 1284.
4. Delangiz, N., Varjovi, M. B., Lajayer, B. A. & Ghorbanpour, M. (2019). The potential of biotechnology for mitigation of greenhouse gasses effects: solutions, challenges, and future perspectives. Arabian Journal of Geosciences, 12, 1-14.
5. Gupta, A., Singh, K., Charles, M. & Pathak, N. (2022). Role of ACC Deaminase producing plant growth promoting rhizobacteria in ameliorating the salinity stress conditions: A review. Era's Journal of Medical Research, 9 (1), 60-77.
6. Devi, V., Kaur, A., Sethi, M. & Avinash, G. (2023). Effect of Low-Temperature Stress on Plant Performance and Adaptation to Temperature Change.
7. Popov, V. & Deryabin, A. (2023). Effect of Photoperiod Duration on Efficiency of Low-Temperature Hardening of Arabidopsis thaliana Heynh.(L.). Russian Journal of Plant Physiology, 70 (3), 56.
8. Aslam, M., Fakher, B., Ashraf, M. A., Cheng, Y., Wang, B. & Qin, Y. (2022). Plant low-temperature stress: Signaling and response. Agronomy, 12 (3), 702.
9. Wang, L., Wang, S., Tong, R., Wang, S., Yao, J., Jiao, J., et al. (2022). Overexpression of PgCBF3 and PgCBF7 transcription factors from pomegranate enhances freezing tolerance in arabidopsis under the promoter activity positively regulated by PgICE1. International Journal of Molecular Sciences, 23 (16), 9439.
10. Luo, Z., Zhou, Z., Li, Y., Tao, S., Hu, Z.-R., Yang, J.-S., et al. (2022). Transcriptome-based gene regulatory network analyses of differential cold tolerance of two tobacco cultivars. BMC Plant Biology, 22 (1), 1-16.
11. Zahid, G., Iftikhar, S., Shimira, F., Ahmad, H. M. & Kaçar, Y. A. (2023). An overview and recent progress of plant growth regulators (PGRs) in the mitigation of abiotic stresses in fruits: A review. Scientia Horticulturae, 309, 111621.
12. Petruccelli, R., Bartolini, G., Ganino, T., Zelasco, S., Lombardo, L., Perri, E., et al. (2022). Cold stress, freezing adaptation, varietal susceptibility of Olea europaea L.: A review. Plants, 11 (10), 1367.
13. Altaf, M. A., Shahid, R., Kumar, R., Altaf, M. M., Kumar, A., Khan, L. U., et al. (2022). Phytohormones mediated modulation of abiotic stress tolerance and potential crosstalk in horticultural crops. Journal of Plant Growth Regulation, 1-27.
14. Waadt, R., Seller, C. A., Hsu, P.-K., Takahashi, Y., Munemasa, S. & Schroeder, J. I. (2022). Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology, 23 (10), 680-94.
15. Adhikari, L., Baral, R., Paudel, D., Min, D., Makaju, S. O., Poudel, H. P., et al. (2022). Cold stress in plants: Strategies to improve cold tolerance in forage species. Plant Stress, 4, 100081.
16. Bhattacharya, A. (2022). Effect of low-temperature stress on germination, growth, and phenology of plants: A review. Physiological Processes in Plants under Low Temperature Stress, 1-106.
17. Watanabe, E., Kondo, M., Kamal, M. M., Uemura, M., Takahashi, D. & Kawamura, Y. (2022). Plasma membrane proteomic changes of Arabidopsis DRP1E during cold acclimation in association with the enhancement of freezing tolerance. Physiologia Plantarum, 174 (6), e13820.
18. Manasa S, L., Panigrahy, M., Panigrahi, K. C. & Rout, G. R. (2022). Overview of cold stress regulation in plants. The Botanical Review, 1-29.
19. Rugienius, R., Vinskienė, J., Andriūnaitė, E., Morkūnaitė-Haimi, Š., Juhani-Haimi, P. & Graham, J. Genomic Design of Abiotic Stress-Resistant Berries. Genomic Designing for Abiotic Stress Resistant Fruit Crops: Springer; 2022. p. 197-249.
20. Paredes, M. & Quiles, M. J. (2015). The effects of cold stress on photosynthesis in Hibiscus plants. PLoS One, 10 (9), e0137472.
21. Hajihashemi, S., Noedoost, F., Geuns, J. M., Djalovic, I. & Siddique, K. H. (2018). Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana. Frontiers in Plant Science, 9, 1430.
22. Li, X., Cai, J., Liu, F., Dai, T., Cao, W. & Jiang, D. (2014). Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiology and Biochemistry, 82, 34-43.
23. Wang, L., Zhu, W., Fang, L., Sun, X., Su, L., Liang, Z., et al. (2014). Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biology, 14, 1-14.
24. Tilak, P., Kotnik, F., Née, G., Seidel, J., Sindlinger, J., Heinkow, P., et al. (2023). Proteome‐wide lysine acetylation profiling to investigate the involvement of histone deacetylase HDA5 in the salt stress response of Arabidopsis leaves. The Plant Journal.
25. Raza, A., Su, W., Jia, Z., Luo, D., Zhang, Y., Gao, A., et al. (2022). Mechanistic insights into trehalose-mediated cold stress tolerance in rapeseed (Brassica napus L.) seedlings. Frontiers in plant science, 13, 857980.
26. Verma, N., Giri, S. K., Singh, G., Gill, R. & Kumar, A. (2022). Epigenetic regulation of heat and cold stress responses in crop plants. Plant Gene, 29, 100351.
27. Liu, Y., Dang, P., Liu, L. & He, C. (2019). Cold acclimation by the CBF–COR pathway in a changing climate: Lessons from Arabidopsis thaliana. Plant Cell Reports, 38, 511-9.
28. Li, X., Jiang, H., Liu, F., Cai, J., Dai, T., Cao, W., et al. (2013). Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regulation, 71, 31-40.
29. Zhou, X., Muhammad, I., Lan, H. & Xia, C. (2022). Recent advances in the analysis of cold tolerance in maize. Frontiers in Plant Science, 13, 866034.
30. Raza, A., Charagh, S., Najafi-Kakavand, S., Abbas, S., Shoaib, Y., Anwar, S., et al. (2023). Role of phytohormones in regulating cold stress tolerance: physiological and molecular approaches for developing cold-smart crop plants. Plant Stress, 100152.
31. Yadav, S. K. (2010). Cold stress tolerance mechanisms in plants. A review. Agronomy for Sustainable Development, 30 (3), 515-27.
32. Aslam, M. M., Rashid, M. A. R., Siddiqui, M. A., Khan, M. T., Farhat, F., Yasmeen, S., et al. (2022). Recent insights into signaling responses to cope drought stress in rice. Rice Science, 29 (2), 105-17.
33. Atta, K., Adhikary, S., Mondal, S., Mukherjee, S., Pal, A., Mondal, S., et al. (2022). A review on stress physiology and breeding potential of an underutilized, multipurpose legume: Rice bean (Vigna umbellata). Developing Climate Resilient Grain and Forage Legumes, 235-53.
34. Cheong, B. E., Yu, D., Martinez-Seidel, F., Ho, W. W. H., Rupasinghe, T. W., Dolferus, R., et al. (2022). The Effect of Cold Stress on the Root-Specific Lipidome of Two Wheat Varieties with Contrasting Cold Tolerance. Plants, 11 (10), 1364.
35. Liang, Y., Huang, Y., Liu, C., Chen, K. & Li, M. (2023). Functions and interaction of plant lipid signalling under abiotic stresses. Plant Biology, 25 (3), 361-78.
36. Zhang, H., Zhu, J., Gong, Z. & Zhu, J.-K. (2022). Abiotic stress responses in plants. Nature Reviews Genetics, 23 (2), 104-19.
37. Zainy, Z., Fayyaz, M., Yasmin, T., Hyder, M. Z., Haider, W. & Farrakh, S. (2023). Antioxidant enzymes activity and gene expression in wheat-stripe rust interaction at seedling stage. Physiological and Molecular Plant Pathology, 124, 101960.
38. Bhat, K. A., Mahajan, R., Pakhtoon, M. M., Urwat, U., Bashir, Z., Shah, A. A., et al. (2022). Low temperature stress tolerance: An insight into the omics approaches for legume crops. Frontiers in Plant Science, 13, 888710.
39. Weiszmann, J., Walther, D., Clauw, P., Back, G., Gunis, J., Reichardt, I., et al. (2023). Metabolome plasticity in 241 Arabidopsis thaliana accessions reveals evolutionary cold adaptation processes. Plant Physiology, kiad298.
40. Dubrovna, O., Mykhalska, S. & Komisarenko, A. (2022). Using proline metabolism genes in plant genetic engineering. Cytology and Genetics, 56 (4), 361-78.
41. Schubert, M., Grønvold, L., Sandve, S. R., Hvidsten, T. R. & Fjellheim, S. (2017). Evolution of cold acclimation in temperate grasses (Pooideae). bioRxiv, 210021.
42. Ahad, A., Gul, A., Batool, T. S., Huda, N.-u., Naseeer, F., Abdul Salam, U., et al. (2023). Molecular and genetic perspectives of cold tolerance in wheat. Molecular Biology Reports, 1-19.
43. Prerostova, S. & Vankova, R. Phytohormone-mediated regulation of heat stress response in plants. Plant Hormones and Climate Change: Springer; 2023. p. 167-206.
44. Yaqoob, U., Jan, N., Raman, P. V., Siddique, K. H. & John, R. (2022). Crosstalk between brassinosteroid signaling, ROS signaling and phenylpropanoid pathway during abiotic stress in plants: Does it exist? Plant Stress, 4, 100075.
45. Masouleh, S. S. S., Aldine, N. J. & Sassine, Y. N. (2020). The role of organic solutes in the osmotic adjustment of chilling-stressed plants (vegetable, ornamental and crop plants). Ornamental Horticulture, 25, 434-42.
46. Noor, H., Hao, R., Wang, P., Ren, A., Noor, F., Sun, M., et al. (2022). Effects of nutrient management strategies on yield formation of dryland wheat in the Loess Plateau of China. J Food Nutr Res, 10 (3), 188-99.
47. Zanotto, S., Bertrand, A., Purves, R. W., Olsen, J. E., Elessawy, F. M. & Ergon, Å. (2023). Biochemical changes after cold acclimation in Nordic red clover (Trifolium pratense L.) accessions with contrasting levels of freezing tolerance. Physiologia Plantarum, e13953.
48. Boinot, M., Karakas, E., Koehl, K., Pagter, M. & Zuther, E. (2022). Cold stress and freezing tolerance negatively affect the fitness of Arabidopsis thaliana accessions under field and controlled conditions. Planta, 255 (2), 39.
49. Debnath, B., Akhi, M. Z., Rob, M. M., Sikder, A., Rahman, M. M., Islam, M. S., et al. Role of Phytohormones in Plant Responses to Acid Rain. Plant Hormones and Climate Change: Springer; 2023. p. 95-124.
50. Yao, T., Xie, R., Zhou, C., Wu, X. & Li, D. (2023). Roles of Brossinosteroids Signaling in Biotic and Abiotic Stresses. Journal of Agricultural and Food Chemistry.
51. Jan, M., Mir, T. A., Khare, R. K. & Saini, N. Adaptation strategies of medicinal plants in response to environmental stresses. Environmental Challenges and Medicinal Plants: Sustainable Production Solutions under Adverse Conditions: Springer; 2022. p. 133-51.
52. Lado, J., Rey, F. & Manzi, M. Phytohormones and Cold Stress Tolerance. Plant Hormones and Climate Change: Springer; 2023. p. 207-26.
53. Wang, R., Yu, M., Xia, J., Ren, Z., Xing, J., Li, C., et al. (2023). Cold stress triggers freezing tolerance in wheat (Triticum aestivum L.) via hormone regulation and transcription of related genes. Plant Biology, 25 (2), 308-21.
54. Wang, L., Wu, B., Chen, G., Chen, H., Peng, Y., Sohail, H., et al. (2023). The essential role of jasmonate signaling in Solanum habrochaites rootstock-mediated cold tolerance in tomato grafts. Horticulture Research, 10 (1), uhac227.
55. Li, A., Sun, X. & Liu, L. (2022). Action of salicylic acid on plant growth. Frontiers in Plant Science, 13, 878076.
56. Lafuente, M. T. & Romero, P. (2022). Hormone profiling and heat-induced tolerance to cold stress in citrus fruit. Postharvest Biology and Technology, 194, 112088.
57. Wang, C.-K., Zhao, Y.-W., Han, P.-L., Yu, J.-Q., HAO, Y.-J., Qian, X., et al. (2022). Auxin response factor gene MdARF2 is involved in ABA signaling and salt stress response in apple. Journal of Integrative Agriculture, 21 (8), 2264-74.
58. Zhao, G., Cheng, Q., Zhao, Y., Wu, F., Mu, B., Gao, J., et al. (2023). The abscisic acid–responsive element binding factors MAPKKK18 module regulates abscisic acid–induced leaf senescence in Arabidopsis. Journal of Biological Chemistry, 299 (4).
59. Kumar, S., Shah, S. H., Vimala, Y., Jatav, H. S., Ahmad, P., Chen, Y., et al. (2022). Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Frontiers in Plant Science, 13, 972856.
60. Su, M., Zhang, M., Liu, Y. & Han, Z. (2022). Abscisic Acid, Paclobutrazol, and Salicylic Acid Alleviate Salt Stress in Populus talassica× Populus euphratica by Modulating Plant Root Architecture, Photosynthesis, and the Antioxidant Defense System. Forests, 13 (11), 1864.
61. Singh, A. & Roychoudhury, A. (2023). Abscisic acid in plants under abiotic stress: Crosstalk with major phytohormones. Plant Cell Reports, 1-14.
62. Huang, J., Zhao, X., Bürger, M., Chory, J. & Wang, X. (2023). The role of ethylene in plant temperature stress response. Trends in Plant Science, 28 (7), 808-24.
63. Lado, J. & Manzi, M. (2017). Metabolic and hormonal responses of plants to cold stress. Medicinal plants and environmental challenges, 137-58.
64. Bielach, A., Hrtyan, M. & Tognetti, V. B. (2017). Plants under stress: involvement of auxin and cytokinin. International Journal of Molecular Sciences, 18 (7), 1427.
65. Lu, Z., Hu, W., Ye, X., Lu, J., Gu, H., Li, X., et al. (2022). Potassium regulates diel leaf growth of Brassica napus by coordinating the rhythmic carbon supply and water balance. Journal of Experimental Botany, 73 (11), 3686-98.
66. Zandalinas, S. I., Balfagón, D., Gómez-Cadenas, A. & Mittler, R. (2022). Plant responses to climate change: metabolic changes under combined abiotic stresses. Journal of Experimental Botany, 73 (11), 3339-54.
67. Zhu, X.-G., Treves, H. & Zhao, H., editors. Mechanisms controlling metabolite concentrations of the Calvin Benson Cycle. Seminars in Cell & Developmental Biology; 2023: Elsevier.
68. Rahman, S., Iqbal, M. & Husen, A. (2023). Medicinal plants and abiotic stress: an overview. Medicinal Plants: Their Response to Abiotic Stress, 1-34.
69. Tyagi, S., Shah, A., Karthik, K., Rathinam, M., Rai, V., Chaudhary, N., et al. (2022). Reactive oxygen species in plants: An invincible fulcrum for biotic stress mitigation. Applied Microbiology and Biotechnology, 106 (18), 5945-55.
70. Barbosa Júnior, M. R., Moreira, B. R. d. A., Brito Filho, A. L. d., Tedesco, D., Shiratsuchi, L. S. & Silva, R. P. d. (2022). UAVs to monitor and manage sugarcane: integrative review. Agronomy, 12 (3), 661.
71. Ma, W., Tang, S., Dengzeng, Z., Zhang, D., Zhang, T. & Ma, X. (2022). Root exudates contribute to belowground ecosystem hotspots: a review. Frontiers in Microbiology, 13, 937940.
72. Li, D., Li, X., Dong, J., Gruda, N. S. & Duan, Z. (2023). Warm root‐zone temperature ensures the mineral concentrations in cucumber plants under elevated [CO2] by improving the migration pathways of mineral elements from the soil to plants. Journal of Plant Nutrition and Soil Science.
73. Sheibanirad, A., Haghighi, M. & Pessarakli, M. (2023). The effect of root zone temperature at low nitrogen level of nutrient solution on sweet pepper. Journal of Plant Nutrition, 1-18.
74. Zhang, H., Sun, X. & Song, W. (2023). Physiological and Growth Characteristics of Tomato Seedlings in Response to Low Root-zone Temperature. HortScience, 58 (4), 442-8.
75. Ali, K., Zaghum, M. J., Ali, Z., Javaid, M. U., Qayyum, M. U. & Raza, A. (2022). Chilling stress effects on structure, function and development of different plant processes. Acta Scientific Agriculture (ISSN: 2581-365X), 6 (2).
76. Chahal, G. K., Ghai, M. & Kaur, J. (2022). Stress mechanisms and adaptations in plants. Journal of Pharmacognosy and Phytochemistry, 11 (2), 109-14.
77. Yang, X., Yu, H., Duncan, S., Zhang, Y., Cheema, J., Liu, H., et al. (2022). RNA G-quadruplex structure contributes to cold adaptation in plants. Nature Communications, 13 (1), 6224.
78. Gaikwad, D. J., Ubale, N. B., Pal, A., Singh, S., Ali, M. A. & Maitra, S. (2022). Abiotic stresses impact on major cereals and adaptation options-A review. Research on Crops, 23 (4), 896-915.
79. Raza, A., Charagh, S., García-Caparrós, P., Rahman, M. A., Ogwugwa, V. H., Saeed, F., et al. (2022). Melatonin-mediated temperature stress tolerance in plants. GM Crops & Food, 13 (1), 196-217.
80. Mo, F., Xue, X., Meng, L., Zhang, Y., Cui, Y., Liu, J., et al. (2023). Genome-wide identification and expression analysis of SLAC1 gene family in tomato (Solanum lycopersicum) and the function of SlSLAC1–6 under cold stress. Scientia Horticulturae, 313, 111904.
81. Kruglova, N. & Zinatullina, A. (2022). In Vitro Culture of Autonomous Embryos as a Model System for the Study of Plant Stress Tolerance to Abiotic Factors (on the Example of Cereals). Biology Bulletin Reviews, 12 (2), 201-11.
82. Elakhdar, A., Slaski, J. J., Kubo, T., Hamwieh, A., Hernandez Ramirez, G., Beattie, A. D., et al. (2023). Genome-wide association analysis provides insights into the genetic basis of photosynthetic responses to low-temperature stress in spring barley. Frontiers in Plant Science, 14, 1159016.
83. Vu, H. S., Shiva, S., Samarakoon, T., Li, M., Sarowar, S., Roth, M. R., et al. (2022). Specific Changes in Arabidopsis thaliana Rosette Lipids during Freezing Can Be Associated with Freezing Tolerance. Metabolites, 12 (5), 385.
84. Trono, D. & Pecchioni, N. (2022). Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview. Plants, 11 (23), 3358.
85. Liu, J., Qiu, G., Liu, C., Li, H., Chen, X., Fu, Q., et al. (2022). Salicylic acid, a multifaceted hormone, combats abiotic stresses in plants. Life, 12 (6), 886.
86. Kameniarová, M., Černý, M., Novák, J., Ondrisková, V., Hrušková, L., Berka, M., et al. (2022). Light quality modulates plant cold response and freezing tolerance. Frontiers in Plant Science, 13, 887103.
87. Zinta, G., Singh, R. K. & Kumar, R. (2022). Cold adaptation strategies in plants—An emerging role of epigenetics and antifreeze proteins to engineer cold resilient plants. Frontiers in Genetics, 13, 909007.
88. Nicolas-Espinosa, J., Garcia-Ibañez, P., Lopez-Zaplana, A., Yepes-Molina, L., Albaladejo-Marico, L. & Carvajal, M. (2023). Confronting secondary metabolites with water uptake and transport in plants under abiotic stress. International Journal of Molecular Sciences, 24 (3), 2826.
89. Singhal, R. K., Fahad, S., Kumar, P., Choyal, P., Javed, T., Jinger, D., et al. (2023). Beneficial elements: New Players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regulation, 100 (2), 237-65.
90. Ihtisham, M., Hasanuzzaman, M., El-Sappah, A. H., Zaman, F., Khan, N., Raza, A., et al. (2023). Primary plant nutrients modulate the reactive oxygen species metabolism and mitigate the impact of cold stress in overseeded perennial ryegrass. Frontiers in Plant Science, 14, 1149832.
91. Arikan, B., Ozfidan-Konakci, C., Yildiztugay, E., Turan, M. & Cavusoglu, H. (2022). Polystyrene nanoplastic contamination mixed with polycyclic aromatic hydrocarbons: Alleviation on gas exchange, water management, chlorophyll fluorescence and antioxidant capacity in wheat. Environmental Pollution, 311, 119851.
92. Sun, C., Sun, N., Ou, Y., Gong, B., Jin, C., Shi, Q., et al. (2022). Phytomelatonin and plant mineral nutrition. Journal of Experimental Botany, 73 (17), 5903-17.
93. Tiwari, M., Kumar, R., Subramanian, S., Doherty, C. J. & Jagadish, S. K. (2023). Auxin–cytokinin interplay shapes root functionality under low-temperature stress. Trends in Plant Science.
94. Antonietta, M., de Felipe, M., Rothwell, S. A., Williams, T. B., Skilleter, P., Albacete, A., et al. (2023). Prolonged low temperature exposure de‐sensitises ABA‐induced stomatal closure in soybean, involving an ethylene‐dependent process. Plant, Cell & Environment.
95. Remigante, A., Spinelli, S., Basile, N., Caruso, D., Falliti, G., Dossena, S., et al. (2022). Oxidation stress as a mechanism of aging in human erythrocytes: Protective effect of quercetin. International Journal of Molecular Sciences, 23 (14), 7781.
96. Jin, X., Ackah, M., Wang, L., Amoako, F. K., Shi, Y., Essoh, L. G., et al. (2023). Magnesium Nutrient Application Induces Metabolomics and Physiological Responses in Mulberry (Morus alba) Plants. International Journal of Molecular Sciences, 24 (11), 9650.
97. Hafeez, A., Rasheed, R., Ashraf, M. A., Rizwan, M. & Ali, S. (2022). Effects of exogenous taurine on growth, photosynthesis, oxidative stress, antioxidant enzymes and nutrient accumulation by Trifolium alexandrinum plants under manganese stress. Chemosphere, 308, 136523.
98. Lanza, M. G. D. B. & Dos Reis, A. R. (2021). Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiology and Biochemistry, 164, 27-43.
99. Wolfram, T., Weidenbach, L. M., Adolf, J., Schwarz, M., Schädel, P., Gollowitzer, A., et al. (2021). The trace element selenium is important for redox signaling in phorbol ester-differentiated THP-1 macrophages. International Journal of Molecular Sciences, 22 (20), 11060.
100. Li, S. & Liu, C. (2022). Use of Selenium Accumulators and Hyperaccumulators in Se-Phytoremediation Technologies: Recent Progress and Future Perspectives. Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement, 365-81.
101. Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł. & Garnczarska, M. (2022). Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. International Journal of Molecular Sciences, 23 (9), 5186.
102. Sangwan, S., Shameem, N., Yashveer, S., Tanwar, H., Parray, J. A., Jatav, H. S., et al. (2022). Role of salicylic acid in combating heat stress in plants: Insights into modulation of vital processes. Frontiers in Bioscience-landmark.
103. Thakur, A., Singh, A., Tandon, A. & Sharma, V. (2023). Insights into the molecular mechanisms of uptake, phytohormone interactions and stress alleviation by silicon: a beneficial but non-essential nutrient for plants. Plant Growth Regulation, 1-13.
104. Kidokoro, S., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2022). Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science.
105. Bhat, T. A., Kanth, R. H., Jan, B., Nazir, A., Ahanger, S. A., Mir, M. S., et al. (2022). Real-Time nitrogen application of rice varieties based on leaf colour chart under system of rice intensification in temperate climate. Agronomy, 12 (9), 2229.
106. Taghvaei, M., Nasrolahizadehi, A. & Mastinu, A. (2022). Effect of Light, Temperature, Salinity, and Halopriming on Seed Germination and Seedling Growth of Hibiscus sabdariffa under Salinity Stress. Agronomy, 12 (10), 2491.
107. Gao, C., Mumtaz, M. A., Zhou, Y., Yang, Z., Shu, H., Zhu, J., et al. (2022). Integrated transcriptomic and metabolomic analyses of cold-tolerant and cold-sensitive pepper species reveal key genes and essential metabolic pathways involved in response to cold stress. International Journal of Molecular Sciences, 23 (12), 6683.
108. Rastgoo, M., Nezami, A., Hasanfard, A., Nabati, J. & Ahmadi‐Lahijani, M. J. (2023). Freezing stress induces changes in the morphophysiological of chickpea and wild mustard seedlings. Legume Science, 5 (2), e173.
109. Denaxa, N.-K., Tsafouros, A., Ntanos, E. & Roussos, P. A. (2023). Role of glycine betaine in the protection of plants against environmental stresses. Plant stress mitigators: Elsevier; p. 127-58.
110. Ding, Y. & Yang, S. (2022). Surviving and thriving: How plants perceive and respond to temperature stress. Developmental Cell.
111. Li, X., Liang, X., Li, W., Yao, A., Liu, W., Wang, Y., et al. (2022). Isolation and functional analysis of MbCBF2, a Malus baccata (L.) Borkh CBF transcription factor gene, with functions in tolerance to cold and salt stress in transgenic Arabidopsis thaliana. International Journal of Molecular Sciences, 23 (17), 9827.
112. Jiang, W., Tong, T., Chen, X., Deng, F., Zeng, F., Pan, R., et al. (2022). Molecular response and evolution of plant anion transport systems to abiotic stress. Plant Molecular Biology, 110 (4-5), 397-412.
113. Sharma, G. S. Structural and functional role of plant dehydrins in enhancing stress tolerance. Plant Stress: Challenges and Management in the New Decade: Springer; 2022. p. 111-21.
114. Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., et al. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114 (35), 9326-31.
115. Ding, Y., Shi, Y. & Yang, S. (2020). Molecular regulation of plant responses to environmental temperatures. Molecular Plant, 13 (4), 544-64.
116. Ling, Y., Mahfouz, M. M. & Zhou, S. (2021). Pre-mRNA alternative splicing as a modulator for heat stress response in plants. Trends in Plant Science, 26 (11), 1153-70.
117. Liu, X. H., Lyu, Y. S., Yang, W., Yang, Z. T., Lu, S. J. & Liu, J. X. (2020). A membrane‐associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnology Journal, 18 (5), 1317-29.
118. Zhang, H., Zhao, Y. & Zhu, J.-K. (2020). Thriving under stress: how plants balance growth and the stress response. Developmental Cell, 55 (5), 529-43.
119. Yang, X., Wang, R., Jing, H., Chen, Q., Bao, X., Zhao, J., et al. (2020). Three novel c-repeat binding factor genes of dimocarpus longan regulate cold stress response in Arabidopsis. Frontiers in Plant Science, 11, 1026.
120. Ahmad, M., Li, J., Yang, Q., Jamil, W., Teng, Y. & Bai, S. (2019). Phylogenetic, molecular, and functional characterization of PpyCBF proteins in Asian pears (Pyrus pyrifolia). International Journal of Molecular Sciences, 20 (9), 2074.
121. Jin, R., Kim, B. H., Ji, C. Y., Kim, H. S., Li, H. M. & Kwak, S.-S. (2017). Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiology and Biochemistry, 118, 45-54.
122. An, D., Ma, Q., Yan, W., Zhou, W., Liu, G. & Zhang, P. (2016). Divergent regulation of CBF regulon on cold tolerance and plant phenotype in cassava overexpressing Arabidopsis CBF3 gene. Frontiers in Plant Science, 7, 1866.
123. Ebrahimi, M., Abdullah, S. N. A., Aziz, M. A. & Namasivayam, P. (2016). Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway. Journal of Plant Physiology, 202, 107-20.
124. Zhuang, L., Yuan, X., Chen, Y., Xu, B., Yang, Z. & Huang, B. (2015). PpCBF3 from cold-tolerant kentucky bluegrass involved in freezing tolerance associated with up-regulation of cold-related genes in transgenic Arabidopsis thaliana. PLoS One, 10 (7), e0132928.
125. Kidokoro, S., Watanabe, K., Ohori, T., Moriwaki, T., Maruyama, K., Mizoi, J., et al. (2015). Soybean DREB 1/CBF‐type transcription factors function in heat and drought as well as cold stress‐responsive gene expression. The Plant Journal, 81 (3), 505-18.
126. Byun, M. Y., Lee, J., Cui, L. H., Kang, Y., Oh, T. K., Park, H., et al. (2015). Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Science, 236, 61-74.
127. Wisniewski, M., Norelli, J., Bassett, C., Artlip, T. & Macarisin, D. (2011). Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus× domestica) results in short-day induced dormancy and increased cold hardiness. Planta, 233, 971-83.
128. Gutha, L. R. & Reddy, A. R. (2008). Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant molecular biology, 68, 533-55.
129. Oh, S. J., Kwon, C. W., Choi, D. W., Song, S. I. & Kim, J. K. (2007). Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnology Journal, 5 (5), 646-56.
130. Skinner, J. S., von Zitzewitz, J., Szűcs, P., Marquez-Cedillo, L., Filichkin, T., Amundsen, K., et al. (2005). Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant molecular biology, 59, 533-51.
131. Ke, L., Lei, W., Yang, W., Wang, J., Gao, J., Cheng, J., et al. (2020). Genome-wide identification of cold responsive transcription factors in Brassica napus L. BMC Plant Biology, 20 (1), 1-13.
132. Ding, Y., Shi, Y. & Yang, S. (2019). Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist, 222 (4), 1690-704.
133. Chen, X., Ding, Y., Yang, Y., Song, C., Wang, B., Yang, S., et al. (2021). Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology, 63 (1), 53-78.
134. Qi, L., Shi, Y., Terzaghi, W., Yang, S. & Li, J. (2022). Integration of light and temperature signaling pathways in plants. Journal of Integrative Plant Biology, 64 (2), 393-411.
135. Hong, J. H., Savina, M., Du, J., Devendran, A., Ramakanth, K. K., Tian, X., et al. (2017). A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. Cell, 170 (1), 102-13. e14.
136. Sharwood, R. E., Ghannoum, O., Kapralov, M. V., Gunn, L. H. & Whitney, S. M. (2016). Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis. Nature Plants, 2 (12), 1-9.
137. Fritz, V., Tereucán, G., Santander, C., Contreras, B., Cornejo, P., Ferreira, P. A. A., et al. (2022). Effect of inoculation with arbuscular mycorrhizal fungi and fungicide application on the secondary metabolism of Solanum tuberosum leaves. Plants, 11 (3), 278.
138. Rehman, A., Shahzad, B., Im, S. Y. & Lee, D.-J. Brassinosteroids and cold stress tolerance in plants. Brassinosteroids in Plant Developmental Biology and Stress Tolerance: Elsevier; 2022. p. 189-99.
139. Chen, Z.-Y., Wang, Y.-T., Pan, X.-B. & Xi, Z.-M. (2019). Amelioration of cold-induced oxidative stress by exogenous 24-epibrassinolide treatment in grapevine seedlings: toward regulating the ascorbate–glutathione cycle. Scientia Horticulturae, 244, 379-87.
140. Talaat, N. B., Ibrahim, A. S. & Shawky, B. T. (2022). Enhancement of the expression of ZmBZR1 and ZmBES1 regulatory genes and antioxidant defense genes triggers water stress mitigation in maize (Zea mays L.) plants treated with 24-epibrassinolide in combination with spermine. Agronomy, 12 (10), 2517.
141. Fang, P., Yan, M., Chi, C., Wang, M., Zhou, Y., Zhou, J., et al. (2019). Brassinosteroids act as a positive regulator of photoprotection in response to chilling stress. Plant Physiology, 180 (4), 2061-76.
142. Nolan, T. M., Vukašinović, N., Liu, D., Russinova, E. & Yin, Y. (2020). Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. The Plant Cell, 32 (2), 295-318.
143. Hu, S., Wang, T., Shao, Z., Meng, F., Chen, H., Wang, Q., et al. (2022). Brassinosteroid biosynthetic gene SlCYP90B3 alleviates chilling injury of tomato (Solanum lycopersicum) fruits during cold storage. Antioxidants, 11 (1), 115.
144. Li, P., Yin, F., Song, L. & Zheng, X. (2016). Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid. Food Chemistry, 202, 125-32.
145. Zhang, L., Cao, X., Wang, Z., Zhang, Z., Li, J., Wang, Q., et al. (2022). Brassinolide alleviated chilling injury of banana fruit by regulating unsaturated fatty acids and phenolic compounds. Scientia Horticulturae, 297, 110922.
146. Wang, X., Yuan, S., Shi, J., Zhao, Y., Lu, H., Jiang, X., et al. (2023). Hydroxypropyl cellulose reduces chilling injury in green bell pepper (Capsisum annuum L.) by regulating the activity and gene expression of enzymes involved in antioxidant and membrane lipid metabolism. Scientia Horticulturae, 312, 111884.
147. Al-hashimi, A. M. (2023). A Review: Growing Rice in the Controlled Environments. Biosciences Biotechnology Research Asia, 20 (1), 13-28.
148. Jia, Y., Wang, J., Qu, Z., Zou, D., Sha, H., Liu, H., et al. (2019). Effects of low water temperature during reproductive growth on photosynthetic production and nitrogen accumulation in rice. Field Crops Research, 242, 107587.
149. Zhao, Y., Han, Q., Ding, C., Huang, Y., Liao, J., Chen, T., et al. (2020). Effect of Low Temperature on Chlorophyll Biosynthesis and Chloroplast Biogenesis of Rice Seedlings during Greening. Int J Mol Sci, 21 (4).
150. Liu, X., Zhou, Y., Xiao, J. & Bao, F. (2018). Effects of Chilling on the Structure, Function and Development of Chloroplasts. Front Plant Sci, 9, 1715.
151. Ma, H., Zhu, X., Cao, T., Li, S., Guo, E., Shi, Y., et al. (2023). Responses of rice cultivars with different cold tolerance to chilling in booting and flowering stages: An experiment in Northeast China. Journal of Agronomy and Crop Science.
152. Jahed, K. R., Saini, A. K. & Sherif, S. M. (2023). Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Frontiers in Plant Science, 14.
153. Wang, L., Di, T., Peng, J., Li, Y., Li, N., Hao, X., et al. (2022). Comparative metabolomic analysis reveals the involvement of catechins in adaptation mechanism to cold stress in tea plant (Camellia sinensis var. sinensis). Environmental and Experimental Botany, 201, 104978.
154. Storey, J. M. & Storey, K. B. (2022). Chaperone proteins: universal roles in surviving environmental stress. Cell Stress and Chaperones, 1-12.
155. Ratajczak, K., Sulewska, H., Panasiewicz, K., Faligowska, A. & Szymańska, G. (2023). Phytostimulator Application after Cold Stress for Better Maize (Zea mays L.) Plant Recovery. Agriculture, 13 (3), 569.
156. Shen, J., Liu, J., Yuan, Y., Chen, L., Ma, J., Li, X., et al. (2022). The mechanism of abscisic acid regulation of wild Fragaria species in response to cold stress. BMC Genomics, 23 (1), 1-17.
157. Bich, L. & Bechtel, W. (2022). Control mechanisms: Explaining the integration and versatility of biological organisms. Adaptive Behavior, 30 (5), 389-407.
158. Aqeel, U., Aftab, T., Khan, M. M. A. & Naeem, M. (2022). Regulation of essential oil in aromatic plants under changing environment. Journal of Applied Research on Medicinal and Aromatic Plants, 100441.
159. Anjum, N. A., Thangavel, P., Rasheed, F., Masood, A., Pirasteh‐Anosheh, H. & Khan, N. A. (2023). Osmolytes: Efficient Oxidative Stress‐Busters in Plants. Global Climate Change and Plant Stress Management, 399-409.
160. Salvi, P., Agarrwal, R., Kajal, Gandass, N., Manna, M., Kaur, H., et al. (2022). Sugar transporters and their molecular tradeoffs during abiotic stress responses in plants. Physiologia Plantarum, 174 (2), e13652.
161. Khalid, M., Rehman, H. M., Ahmed, N., Nawaz, S., Saleem, F., Ahmad, S., et al. (2022). Using exogenous melatonin, glutathione, proline, and glycine betaine treatments to combat abiotic stresses in crops. International Journal of Molecular Sciences, 23 (21), 12913.
162. Sun, Z., Li, S., Chen, W., Zhang, J., Zhang, L., Sun, W., et al. (2021). Plant Dehydrins: Expression, Regulatory Networks, and Protective Roles in Plants Challenged by Abiotic Stress. Int J Mol Sci, 22 (23).
163. Wang, F., Guo, Z., Li, H., Wang, M., Onac, E., Zhou, J., et al. (2016). Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiology, 170 (1), 459-71.
164. Zhao, M. L., Wang, J. N., Shan, W., Fan, J. G., Kuang, J. F., Wu, K. Q., et al. (2013). Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate‐induced chilling tolerance in banana fruit. Plant, Cell & Environment, 36 (1), 30-51.
165. Cao, H.-X., Sun, C.-X., Shao, H.-B. & Lei, X.-T. (2011). Effects of low temperature and drought on the physiological and growth changes in oil palm seedlings. African Journal of Biotechnology, 10 (14), 2630-7.
166. Mirdehghan, S. & Ghotbi, F. (2014). Effects of salicylic acid, jasmonic acid, and calcium chloride on reducing chilling injury of pomegranate (Punica granatum L.) fruit. Journal of Agricultural Science and Technology, 16 (1), 163-73.
167. Dai, P., Zhai, M., Wang, A., Ma, H. & Lyu, D. (2023). Exogenous methyl jasmonate enhanced the antioxidant capacity of Malus baccata by stimulating jasmonate signalling under suboptimal low root-zone temperature. Scientia Horticulturae, 321, 112292.
168. Fung, R. W., Wang, C. Y., Smith, D. L., Gross, K. C. & Tian, M. (2004). MeSA and MeJA increase steady-state transcript levels of alternative oxidase and resistance against chilling injury in sweet peppers (Capsicum annuum L.). Plant Science, 166 (3), 711-9.
169. Gharib, F. & Hegazi, A. (2010). Salicylic acid ameliorates germination, seedling growth, phytohormone and enzymes activity in bean (Phaseolus vulgaris L.) under cold stress. Journal of American Science, 6 (10), 675-83.
170. Kang, G.-Z., Wang, Z.-X., Xia, K.-F. & Sun, G.-C. (2007). Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid. Journal of Zhejiang University Science B, 8, 277-82.
171. Soufi, S., Rezgui, S., Bettaeib, T., Sellami, S. & Tounsi, S. (2015). Early effects of chilling stress on the morphological and physiological statut of pretreated Stevia rebaudiana Bert. seedlings. Journal of New Sciences, 14.
172. Alaei, S. & Mahna, N. (2023). Influence of Exogenous Application of Glycine Betaine on Growth and Ion Accumulation in Strawberry Plants under Saline Condition. International Journal of Horticultural Science & Technology, 10 (1).
173. Abdollahi Hesar, A., Sofalian, O., Alizadeh, B., Asghari, A. & Zali, H. (2022). Investigation of frost stress on yield, yield components and a number of biochemical traits in rapeseed genotypes. Environmental Stresses in Crop Sciences, 15 (2), 551-63.
174. Karimaan, M., Kafi, M., Nezami, A. & Sadeghzadeh Hemayati, S. (2023). The effect of different levels of paclobutrazol on alleviation of freezing stress of two winter wheat cultivars under controlled and field condition. Crop Science Research in Arid Regions, -.
175. Jafarinasab, A. s., Maddah hosseini, S. & Azari, A. (2023). Cold stress effect on some physiological characteristics and antioxidant systems in some grass pea (Lathyrus sativus) ecotypes. Plant Process and Function, 12 (53), 299-314.
176. Amini, S., Maali Amiri, R. & Zeinali, H. (2023). Improvment of cold tolerance of chickpea through heavy polyamines catabolism and ethylene phytohormone. Agricultural Biotechnology Journal, 15 (1), 1-26.
177. Yağmur, M. (2023). Effects of Seeding Rates and Sowing Times on Grain Yield and Yield Components in Rye (Scale cereale L.) Under Dry Condition. Manas Journal of Agriculture Veterinary and Life Sciences, 13 (1), 9-16.
178. Alizadeh Frutan, M., Pirdashti, H., Yaghoubian, Y. & Babaeizad, V. (2016). Effect of paclobutrazol and priformospora indica inoculation on antioxidant enzymes activity and morphological characteristics of green beans (Phaseoluse vulgaris L.) in chilling stress. Plant Process and Function, 5 (15), 133-46.
179. Khorsandi, T., Nezami, A., Kafi, M. & Goldani, M. (2015). Effects of spring late frost on black seed (Nigella sativa L.) under controlled conditions. Iranian Journal of Field Crops Research, 12(4), 665-676.
180. Darini, A., Fathi, Q., Qarineh, M., Saied, K., Khodadadi, M. & Siadat, S. (2013). Effect of planting date and application of anti-freeze on the yield and yield components of potato cultivars under cold stress (case study: fall planting of potatoes in the tropics of Iran). International Journal of Agronomy and Plant Production, 4 (11), 3028-38.
181. Mirmiran, S., Nezami, A. & Kafi, M. (2018). Evaluation of freezing tolerance in fenugreek (Trigonella foenum-graceum L.). Iranian Journal of Field Crops Research, 16 (2), 299-315.
182. Pazireh, S., Nezami, A., Kafi, M. & Goldani, M. (2017). The effect of ecotype and planting date on freezing tolerance in garlic medicinal plant (Allium sativum L.) under controlled conditions. Environmental Stresses in Crop Sciences, 10 (1), 151-62.
183. Kamandy, A., Nezami, A., Kafi, M. & Nabati, J. (2016). Effect of Hexaconazole and Penconazole on Kochia (Kochia scoparia) Freezing Tolerance. Iranian Journal of Field Crops Research, 14 (1), 21-36.
184. Ganapati, R. K., Naveed, S. A., Zafar, S., Wang, W. & Xu, J. (2022). Saline-alkali tolerance in rice: Physiological response, molecular mechanism, and QTL identification and application to breeding. Rice Science, 29 (5), 412-34.
185. Khatun, N., Shinozawa, A., Takahashi, K., Matsuura, H., Jahan, A., Islam, M., et al. (2023). Abscisic acid‐mediated sugar responses are essential for vegetative desiccation tolerance in the liverwort Marchantia polymorpha. Physiologia Plantarum, 175 (2), e13898.