Recognizing the Evolutionary Process of Using Daylight in Schools With Improving Users Performance Approach
Subject Areas : Architectural studiesRomina Khalilzadeh aghdami 1 , s.majid mofidi 2 * , Mansoureh Tahbaz 3
1 - Department of Art and Architecture, West Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Architecture, Faculty of Architecture and Urbanism, Iran University of Science & Technology, Tehran, Iran
3 - - Associate Professor, Department of Architecture and Urban Planning, Shahid Beheshti University, Tehran, Iran.
Keywords: Daylight, School, Performance Improvement, Environmental Comfort, Energy Efficiency,
Abstract :
Learning and education are important parts of every person's life. Schools play the most important role in societies regarding the education of the next generation. Using daylight in designing schools has attracted the attention of designers over the years, and besides improving the efficiency of students, it affects their physical and mental health. Due to performing visual activities in the classroom, it requires qualitative light and providing quantity alone is not effective. Centuries ago, researchers have conducted studies related to the daylight using in schools, and the investigation of this trend indicates daylight using in educational environments. Considering the occurrence of energy crisis in the world and the need to use energy as a factor for growth, development and exercise of the countries power, the use of renewable energy is an undeniable necessity. Daylight using is a factor for participation in reducing energy consumption, and providing environmental comfort requires investigating the factors affecting the quality of received daylight. In order to provide environmental comfort and prevent disturbing glare, it is necessary to design the windows according to the space in order to achieve the criteria of daylight desirability, including the uniformity and useful daylight illuminance. The purpose of this study is to investigate the evolutionary process of using daylight in schools in order to recognize the effects of events in these changes. For this purpose, changes have been investigated with positivist philosophy based on empirical sciences and with inductive reasoning approach. Finally, the development of daylight in schools is affected by the three principles of growth and development of technology, the energy debate, as well as the development of educational theories, and the need to use the appropriate algorithm to use the potential of solar energy in schools with the aim of achieving visual comfort and energy efficiency is proven.
1. بوبکری، محمد. (1397). روشنایی طبیعی،استراتژیهای طراحی ساختمان با رویکرد معماری و سلامتی. مترجم: محمدحسن زهتاب. انتشارات تامر. تهران.
2. جهانگیر, محمد حسین, رشیدی, ریحانه. (1401). بهینه سازی مصرف انرژی در یک ساختمان آموزشی با کمک سناریوهای فیزیکی. برنامه ریزی شهری و توسعه منطقهای، 1 (1)، 73- 88.
3. حسین پوریان، سمانه. (1390). نقش کودک در شکل گیری فضاهای محیطی. نشریه معماری و فرهنگ، شماره 46: 40-46.
4. حیدری، شاهین. (1391). معماری و روشنایی. انتشارات دانشگاه تهران. چاپ دوم. تهران.
5. حیدری، شاهین، جهانی نوق، مجید. (1393). سازگاری حرارتی در معماری نخستین قدم در صرفهجویی مصرف انرژی. انتشارات دانشگاه تهران.
6. حیدری، شاهین. (1397). درآمدی بر روش تحقیق در معماری با نگرشی تحلیلی بر پایاننامه نویسی معماری. انتشارات کتاب فکرنو، تهران.
7. معاونت امور برق و انرژی دفتر برنامه ریزی و اقتصاد کلان برق و انرژی. (1401). ترازنامه انرژی سال 1399. وزارت نیرو.
8. معاونت برنامهریزی و اقتصادی دفتر فناوری اطلاعات و آمار. (1398). گزارش ماهانه آمار صنعت آب و برق. وزارت نیرو.
9. مهدوی نژاد، محمدجواد؛ طاهباز، منصوره؛ دولت آبادی، مهناز. (1395). بهینهسازی تناسبات و نحوهی استفاده از رف نور در معماری کلاسهای آموزشی. نشریه هنرهای زیبا- معماری و شهرسازی. 21(2)، 81-92.
10. Aghahosseini, A., Bogdanov, D., Ghorbani, N., et al. (2018). Analysis of 100% renewable energy for Iran in 2030: integrating solar PV, wind energy and storage. International Journal of Environmental Science and Technology, 15, 17–36. https://doi.org/10.1007/s13762-017-1373-4
11. Al-Obaidi, K. M., Munaaim, M. A. C., Ismail, M. A., & Rahman, A. M. A. (2017). Designing an integrated daylighting system for deep-plan spaces in Malaysian low-rise buildings. Solar Energy, 149, 85-101.
12. ANSI IESNA- RP-3-13. (2014). American National Standard Practice on Lighting for Education Facilities. Illuminating Engineering Society of North America, p. 30.
13. Atre, U. V. (2003). Effect of daylighting on energy consumption and daylight quality in an existing elementary school (Unpublished master's thesis). Texas A & M University, College Station, TX.
14. Baker, L. (2012). A history of school design and its indoor environmental standards, 1900 to today. National Clearinghouse for Educational Facilities. New York.
15. Baker, N., & Steemers, K. (2002). Daylight design of buildings: A handbook for architects and engineers. James & James, London, UK.
16. Booth, R. (2008, July 21). £35bn revamp will produce generation of mediocre schools. The Guardian. https://www.theguardian.com/politics/2008/jul/21/education.secondaryschools
17. Boubekri, M. (2014). Daylighting design: Planning strategies and best practice solutions. Birkhauser, Boston.
18. BS 8206-2: 2008. Lighting for Buildings- Part 2: Code of Practice for Daylighting.
19. BS EN 12665:2011. Light and lighting: Basic terms and criteria for specifying lighting requirements.
20. Building Research Institute. (1959). Building illumination: The effect of new lighting levels. National Academy of Sciences, National Research Council.
21. Byrd, H. (2012). Post-occupancy evaluation of green buildings: The measured impact of over-glazing. Architectural Science Review, 55(3), 206-212.
22. Castaldi, B. (1969). Creative planning of educational facilities. Chicago, IL: Rand McNally & Co. https://archive.org/details/creativeplanning0000unse_e3m2/page/n9/mode/2up
23. Choi, H., Hong, S., Choi, A., & Sung, M. (2016). Toward the accuracy of prediction for energy savings potential and system performance using the daylight responsive dimming system. Energy and Buildings, 133(Supplement C), 271-280.
24. CHPS (The Collaborative for High Performance Schools). (2002). Best practices manual daylighting. Sacramento: CHPS.
25. Code for Interior Lighting. (1977). Chartered Institution of Building Services. London: Chartered Institution of Building Services Engineers.
26. Code for Interior Lighting. (1984). Chartered Institution of Building Services Engineers, London, UK.
27. Derek, P. (1997). Lighting historic buildings. Butterworth-Heinemann, Boston.
28. Derek, P. (2004). Daylighting: Natural light in architecture (1st ed.). Architectural Press, Oxford, UK.
29. Doulos, L. T., Tsangrassoulis, A., Kontaxis, P. A., Kontadakis, A., & Topalis, F. V. (2017). Harvesting daylight with LED or T5 fluorescent lamps? The role of dimming. Energy and Buildings, 140, 336–347. https://doi.org/10.1016/j.enbuild.2017.02.013
30. Dubois, M. C. (2001). Impact of solar shading devices on daylight quality: Measurements in experimental office rooms. Lund University, Sweden.
31. Dubois, M. C., & Blomsterberg, A. (2011). Energy saving potential and strategies for electric lighting in future North European low-energy office buildings: A literature review. Energy and Buildings, 43(10), 2572-2582.
32. Dubois, M. C., Bisegna, F., Gentile, N., Knoop, M., Matusiak, B., Osterhaus, W., & Tetri, E. (2015). Retrofitting the electric lighting and daylighting systems to reduce energy in buildings: A literature review. Energy Research Journal, 6, 25-41.
33. Fiaschi, D., Bandinelli, R., & Conti, S. (2012). A case study for energy issues of public buildings and utilities in a small municipality: Investigation of possible improvements and integration with renewables. Applied Energy, 97, 101-114.
34. Gago, E. J., Muneer, T., Knez, M., & Koster, H. (2015). Natural light controls and guides in buildings: Energy saving for electrical lighting, reduction of cooling load. Renewable and Sustainable Energy Reviews, 41, 1-13.
35. Galasiu, A. D., & Veitch, J. A. (2006). Occupant preferences and satisfaction with the luminous environment and control systems in daylit offices: A literature review. Energy and Buildings, 38, 728-742. https://doi.org/10.1016/j.enbuild.2006.03.001
36. Gelfand, L., & Freed, E. C. (2010). Sustainable school architecture: Design for elementary and secondary schools (1st ed.). Wiley.
37. Ghosh, A., & Norton, B. (2018). Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings. Renewable Energy, 126, 1003–1031.
38. Gregg, A. (1995). Daylighting performance and design. Van Nostrand Reinhold.
39. Haase, M., & Grynning, S. (2017). Optimized façade design: Energy efficiency, comfort, and daylight in the early design phase. Energy Procedia, 132, 484-489.
40. Hamlin, A. D. F. (Ed.). (1910). Modern school houses: Being a series of authoritative articles on planning, sanitation, heating, and ventilation (Vol. 1). Swetland Publishing Co.
41. Hamon, R. L. (1948). Needed research in the school-plant field. Review of Educational Research, 18(1), 5-12.
42. Hee, W. J., Alghoul, M. A., Bakhtyar, B., Elayeb, O., Shameri, M. A., Alrubaih, M. S., & Sopian, K. (2015). The role of window glazing on daylighting and energy saving in buildings. Renewable and Sustainable Energy Reviews, 42, 323-343.
43. Heschong, L. (2002). Daylighting and human performance. ASHRAE Journal, 44, 65-67.
44. Hobday, R. (2016). Myopia and daylight in schools: A neglected aspect of public health? Perspectives in Public Health, 136(1), 50-55. https://doi.org/10.1177/1757913915576679
45. Illuminating Engineering Society of North America. (2000). IESNA lighting handbook (9th ed.). IESNA.
46. Illuminating Engineering Society. (2012). LM-83-12: Approved method: IES spatial daylight autonomy (sDA) and annual sunlight exposure (ASE). https://www.techstreet.com/standards/ies-lm-83-12?product_id=1853773
47. International Energy Agency. (2010). Daylighting in buildings. AECOM.
48. Jakubiec, J. A., & Reinhart, C. F. (2012). The ‘adaptive zone’: A concept for assessing discomfort glare throughout daylit spaces. Lighting Research & Technology, 44(2), 149-170. https://doi.org/10.1177/1477153511420097
49. Knoop, M., Stefani, O., Bueno, B., Matusiak, B., et al. (2020). Daylight: What makes the difference? Lighting Research & Technology, 52, 423–442.
50. Kuller, R., & Lindsten, C. (1992). Health and behavior of children in classrooms with and without windows. Journal of Environmental Psychology, 12(4), 305-317. https://doi.org/10.1016/S0272-4944(05)80079-9
51. Lechner, N. (2014). Heating, cooling, lighting: Sustainable design methods for architects (4th ed.). John Wiley & Sons.
52. Leslie, R. P., Raghavan, R., & Howlett, O. (2005). The potential of simplified concepts for daylight harvesting. Lighting Research & Technology, 37(1), 21-38.
53. Mardaljevic, J. (1995). Validation of a lighting simulation program under real sky conditions. Lighting Research & Technology, 27(4), 181-188. https://doi.org/10.1177/14771535950270040701
54. Mardaljevic, J. (2001). The BRE-IDMP dataset: A new benchmark for the validation of illuminance prediction techniques. Lighting Research & Technology, 33(2), 117-134. https://doi.org/10.1177/136578280103300209
55. Mardaljevic, J. (2021). The implementation of natural lighting for human health from a planning perspective. Lighting Research & Technology, 53(5), 489-513. https://doi.org/10.1177/14771535211022145
56. Marks, J. (2009). A history of educational facilities laboratories (EFL). National Clearinghouse for Educational Facilities, Funded by the U.S. Department of Education.
57. Mayhoub, M. S. (2014). Innovative daylighting systems’ challenges: A critical study. Energy and Buildings, 80, 394-405. https://doi.org/10.1016/j.enbuild.2014.04.019
58. McGuffey, C. (1982). Facilities. In H. J. Walberg (Ed.), Improving educational standards and productivity. McCutchan Publishing.
59. Meresi, A. (2016). Evaluating daylight performance of light shelves combined with external blinds in south-facing classrooms in Athens, Greece. Energy and Buildings, 116, 190-205. https://doi.org/10.1016/j.enbuild.2016.01.009
60. Nabil, A. and Mardaljevic, J. (2005). Useful daylight illuminance: a new paradigm for assessing daylight in buildings.” Lighting Research & Technology, 37(1): 41-59.
61. NCSC (Ed.). (1964). NCSC Guide for Planning School Plants. National Council on Schoolhouse Construction.
62. Osterhaus, W. K. E. (1993). Office lighting: a review of 80 years of standards and recommendations.” In Proceedings of the 1993 IEEE Industry Applications Society Annual Meeting, Toronto. New York, NY: IEEE.
63. Pandharipande, A., and Newsham, G. R. (2018). Lighting controls: Evolution and revolution.” Lighting Research & Technology, 50, 115-128.
64. Ponmalar, V., and Ramesh, B. (2014). Energy Efficient Building Design and Estimation of Energy Savings From Daylighting in Chennai.” Energy Engineering, 111(4), 59-80.
65. Rea, M. S. (2012). The Trotter Paterson Lecture 2012: Whatever Happened to Visual Performance?” Lighting Research & Technology, 44(2), 95-108. https://doi.org/10.1177/1477153512441163
66. Rea, M. S. (Ed.). (2000). The IESNA lighting handbook: reference & application (9th ed.). New York, NY: Illuminating Engineering Society of North America.
67. Reinhart, C. F., and Herkel, S. (2000). The simulation of annual daylight illuminance distributions – a state-of-the-art comparison of six RADIANCE-based methods.” Energy and Buildings, 32(2), 167-187. https://doi.org/10.1016/S0378-7788(00)00042-6
68. Reinhart, C. F., Mardaljevic, J., and Rogers, Z. (2006). Dynamic Daylight Performance Metrics for Sustainable Building Design.” LEUKOS, 3(1), 7-31. https://doi.org/10.1582/LEUKOS.2006.03.01.001
69. Reinhart, C., and Walkenhorst, O. (2001). Dynamic RADIANCE-based daylight simulations for a full-scale test office with outer venetian blinds.” Energy and Buildings, 33(7), 683-697.
70. Robson, E. R. (1972). School architecture. Leicester University Press.
71. Russell, S. (2012). The architecture of light: A textbook of procedures and practices for the architect, interior designer, and lighting designer (2nd ed.). Walnut, CA: Conceptnine.
72. Shen, E., Hu, J., and Patel, M. (2014). Energy and visual comfort analysis of lighting and daylight control strategies.” Building and Environment, 78, 155-170.
73. Simson, R., Fadejev, J., Kurnitski, J., Kesti, J., and Lautso, P. (2016). Assessment of Retrofit Measures for Industrial Halls: Energy Efficiency and Renovation Budget Estimation.” Energy Procedia, 96, 124-133.
74. Taylor, A., and Enggass, K. (2008). Linking Architecture and Education: Sustainable Design of Learning Environments. University of New Mexico Press.
75. Tregenza, P., and Mardaljevic, J. (2018). Daylighting buildings: Standards and the needs of the designer.” Lighting Research & Technology, 50(1), 63-79. https://doi.org/10.1177/1477153517740611
76. Ward, G. J. (1991). RADIANCE Visual Comfort Calculation.” Rapport interne, LESO, EPFL.
77. Weinstein, C. S. (1979). The Physical Environment of the School: A Review of the Research.” Review of Educational Research, 49(4), 577-610. https://doi.org/10.3102/00346543049004577
78. Wienold, J. (2007). Dynamic simulation of blind control strategies for visual comfort and energy balance analysis.” International Building Performance Simulation Association, 1197-1204.
79. Wong, I. L. (2017). A review of daylighting design and implementation in buildings.” Renewable and Sustainable Energy Reviews, 74, 959-968. https://doi.org/10.1016/j.rser.2017.03.061
80. Wu, W., and Ng, E. (2003). A Review of the Development of Daylighting in Schools.” Lighting Research & Technology, 32(2), 111-125.