Investigation on land cover mapping using Sentinel-2A images in the Google Earth Engine Platform
Subject Areas :
1 - Associate Professor, Faculty of Agriculture and Natural Resources, Mahabad Branch, Islamic Azad University, Mahabad, Iran.
Keywords: Random Forest Algorithm, vegetation indices, Kappa coefficient, Remote sensing,
Abstract :
Land cover map show the spatial distribution of different landscapes such as agricultue, natural resources, water and man-made area. It is a valuable tool to managing and reducing risk in challenging issues such as drought and its effects, food security, flood control, and urban planning. In order to overcome the limitations of field work in the mapping of land cover, the use of satellite images due to the wide, multispectral and update data seems to be suitable. In the study area, the spatially heterogeneous landscapes also makes it difficult to classify features. Therefore, the main purpose of the study is accurate and high resolution land cover mapping using Sentinel-2A images in the Google Earth Engine platform. In this regard, three classification algorithms including RF, SVM and CART were evaluated and compared. Various indices were prepared using ratioing and transformation methods. The accuracy of the classifications was evaluated in comparison with ground reference data. Individual bands evaluation showed that the best overall accuracy (49%) was obtained using the CVI index.The best overall accuracy and kappa coefficient of 86% and 0.82 were obtained by RF algorithm. Therefore, while pointing to the advantages of the GEE including easily accessible data and the ability to process and quickly compare of data, it can be claimed that Sentinel-2A images for land cover mapping in terms of cost, time and accuracy, have high efficiency and the map can be very useful for the management and decision making in different natural and man-made resources for the successful implementation of sustainable development.
_||_