Evaluation different methods of Salicylic Acid and Pumice Application on Modifying of Salinity Effects and Some Physiological Properties of cress (Lepidium sativum L.)
Subject Areas : agronomyNasim Basirpour 1 , Elnaz Sabbagh Tazeh 2 *
1 - Department of Soil Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2 - Department of Soil Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Keywords: salinity stress, nutrients, Prolin, Ascorbat peroxidase, Superabsorbant,
Abstract :
Considering the salinity problem and limited water resources in Iran, joint application of salinity moderators and super absorbents, can be an effective approach to improve the growth indexes of plants, grown in saline soils. For investigating the effects of salicylic acid and pumice on yield and nutrients content in Cress (Lepidium sativum) in a saline soil, a field experiment was conducted in a factorial form on completely randomized design with nine treatments and three replications. The factors were 1) salicylic acid (s) including three rates, consists of a) no amendment (control), b) soaking seeds in salicylic acid 0.1 mM for 24 h and c) spraying plants by salicylic acid 0.7 mM in three stages and 2) pumice (p) including three rates, consists of a) 0 (p0), b)15 T/ha (p1) and c) 30 T/ha (p2). Results showed that seeds soaking in salicylic acid 0.1 mM could moderate the negative effects of salinity in Cress. But there was not a significant difference between spraying plants by salicylic acid 0.7 mM and control, in most growth indexes. Increasing pumice rate, increased Dw and P, Ca, Mg and K content and reduced Na content, prolin, H2O2 and ascorbat peroxidase in Cress. Totally P2S1 treatment or application of 30 T/ha pumice and soaking seeds in salicylic acid 0.1 mM, produced the most Dw and nutrients content and the leastsalinity stress indexes in Cress.
بایبوردی، ا. 1395 . تأثیر زئولیت و محلولپاشی سلنیوم و سیلیسیوم بر عملکرد، اجزای عملکرد و برخی
.170-154 :(1) صفات فیزیولوژیک کلزا تحت شرایط تنش شوری. نشریه پژوهشهای زراعی ایران، 14
-2 جلیلی مرندی، ر. ا.، ح. حسنی، ب. دولتی، ح. عزیزی و ر. حاج تقی لو. 1390 . تأثیر سطوح مختلف
مجله علوم .(Vitis vinifera L.) رطوبت خاک بر خصوصیات مورفولوژیکی و فیزیولوژیکی سه رقم انگور
.44-31 :(1) باغبانی. 42
-3 خادم، س. ع.، رمرودی، م.، گلوی، م. و روستا، م. ج. 1390 . تأثیر تنش خشکی و کاربرد نسبتهای
علوم .(Zea mays. L.)َ مختلف کود دامی و پلیمر سوپر جاذب بر عملکرد و اجزای عملکرد ذرت دانهای
.123-115 :(1) گیاهان زراعی، 42
-4 دانشمند، ف.، آروین، م.، کرامت، ب. و مومنی، ن. 1391 . تأثیر تنش شوری و سالسیلیک اسید بر
در شرایط مزرعه. فرایند و کارکرد گیاهی، (Zea mays L.) پارامترهای جوانهزنی بذر و رشد گیاهان ذرت
.56-70 :(1)1
-5 صادقیان، ن.، نیشابوری، م .ر.، جعفر زاده، ع. ا. و تورچی، م. 1385 . تأثیر پومیس، پلی اکریل آمید
و کاه و کلش بر روی فرایند نفوذ و هدایت هیدرولیکی تحت آبیاری بارانی و غرقابی. مجله دانش
.53-47 :(4) کشاورزی 16
-6 نصیبی، ف.، منوچهری کلانتری، خ.، محمدینژاد، ق. و زنگنه، ر. 1394 . اثر اسیدآمینه آرژینین بر
1128- :(5) برخی پارامترهای اکسیداتیو و افزایش تحمل به شوری در گیاه گندم. پژوهشهای گیاهی، 28
.1119
-7 همایی، م. 1381 . واکنش گیاهان به شوری. انتشارات کمیته ملی آبیاری و زهکشی ایران. 354 صفحه.
8-Abbaspour, M., Kallaterjari, S. and Fatehi, F. 2019. The Effect of Salicylic
Acid and L-arginine on morpho-physiological properties and leaf nutrients of
Catharanthus roseus under drought stress. Journal of Horticultural Science, 33(3):
417-432.
9-Abedi-koupai, J. and Sohrab, V. 2004. Effect of super absorbent polymers on
soil hydraulic properties. In: Proceedings of 8th national conference on hydraulics
in engineering, 13-16 May. Gold Coast, Australia.
10-Al-Hakimi, A. M. A. 2008. Effect of salicylic acid on biochemical changes in
wheat plants under khat leaves residues. Plant Soil and Environment, 54: 288–
293.
11-Alexieva, V., Sergiev, I., Mapelli, S. and Karanov, E. 2001. The effect of
drought and ultraviolent radiation on growth and stress markers in pea and wheat.
Journal of Plant Cell and Environment, 24: 1337- 1344.
12-Amira, M. S. and Abdul, Q. 2010. Effect of arginine on growth, Nutrient
composition, yield and nutritional value of mung bean grown under salinity stress.
Nature and Science, 8(7): 30-41.
13-Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism oxidative
stress, and signaling transduction. Annual Review of Plant Biology, 55: 373–399.
14-Asadi, K. and Asrar Z. 2015. Allevation of oxidative damages induced by
salinity in Cress (Lepidium sativum) by pretreating with Arginine. Journal of Crop
Ecophysiology, 9(1): 41-56.
15-Bates, L., Waldren, R. and Teare, I. 1973. Rapid determination of free
proline for water-stress studies. Plant and Soil, 39: 205-207.
16-Bower, C. A. R., Reitemeier, F. and Fireman, F. 1952. Exchangeable-cation
analysis of saline and alkali soils. Soil Science, 73: 251-261.
17-Cottenie, A. 1980. Soil and plant testing as a basis of fertilizer
recommendations. FAO Soils Bulletin, 2(38): 94-100.
18-Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Guneri, E. and Cicek, N.
2007. Salicylic acid induced changes on some physiological parameters
symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.)
grown under salinity. Journal of Plant Physiol, 164: 728-736.
19-Hasegawa, P., Bressan, R. A., Zhu, J. K. and Bohnert, H. J. 2000. Plant
cellular and molecular responses to high salinity. Annual Review of Plant
Molecular Biology, 51: 463-499.
20-Hayat, Q., Hayat, S., Irfan, M. and Ahmad, A. 2010. Effect of exogenous
salicylic acid under changing environment: A review. Environtal and
Experimental Botany, 68: 14-25.
21-Karimi A., Noshadi, F. and Ahmadzadeh, M. 2009. Effect of superabsorbant
(Igita) on soil water, plant growth and irrigation scheduling of sunflower. Journal of
Science and Technology of Agriculture and Natural Resourses, 46(2): 403-414.
22-Khoshbakht, D., Ramin, A. S. and Baghabnaha, M. R. 2011. Ability to
reduce the effect of salinity stress in bean plant using salicylic acid. Magazine for
the production and processing of crops and garden, 2(5): 189-199.
23-Klessig, D. F. and Malam, J. 1994. The salicylic acid signal in plants. Plant
Molecular Biology, 26: 1439-1458.
24-Knudsen, D., Paterson, G. A. and pratt, P. F. 1982. Lithium, sodium and
potsuium. In: A. L. Page, R. H. Miller and D. R. keeney (Eds), Methods of Soil
Analysis. Part2. pp. 225-246. ASA, SSSA, Madison, USA.
25-Machado, R. M. A. and Serralheiro, R. P. 2017. Soil Salinity: Effect on
Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil
Salinization. Horticulturae, 3, 30; doi:10.3390/3020030.
26-Malekian A., Valizadeh, E., Dastoori, M., Samadi, S. and Bayat, V. 2012.
Soil water retention and maize (Zea mays L.) growth as affected by different
amounts of pumice. Australian Journal of Crop Science, 6(3): 450-454.
27-Molassiotis, A. N., Sotiropoulos, T., Tanou, G., Kofidis, G., Diamantidis,
G. and Therios, I. 2006. Antioxidant and anatomical responses in shoot culture of
the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol.
Biological Plantarum, 50: 61–68.
28-Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by
ascorbate-specific peroxidase in spinach choloroplast. Journal of Plant and Cell
Physiology, 22: 867-880.
29-Nasibi, F. and Manouchehri Kalantari, Kh. 2009. Influence of nitric oxide
in protection of tomato seedling against oxidative stress induced by osmotic stress.
Acta Physiologiae Plantarum, 31: 1037-1044.
30-Nelson, D. W. and Sommerz, L. E. 1986. Total carbon, organis carbon and
oeganic matter. In: A. L. Page, R. H. Miller and D. R. keeney (Eds), Methods of Soil
Analysis. Part2. pp. 539-579. ASA. Madison, USA.
31-Nouri K., Omidi, H, Naghdibadi, H. A., Terabi, H. and Ftokian, M. H.
2011. Effect of water and soil salinity on flower yield, soluble compounds, salinity
and essential oil quality of Shirazi chamomile. Water Research in Agriculture, 4
(26): 367-378.
32-Olsen,S. R. and Sommers, L. E. 1982. Phosphorus. In: A. L. Page, R. H. Miller
and D. R. keeney (Eds), Methods of Soil Analysis. Part2. pp. 403-430. Agronomy
Monograph No. 9. ASA and SSSA: Madison, WI.
33-Parida, A. K. and Das, B. 2005. Salt tolerance and salinity effects onplants a
review. Ecotoxicology and environmntal safety, 60: 324-349.
34-Sairam, R. K. and Tyagi, A. 2004. Physiology and molecular biology of
salinity stress tolerance in plants. Current Science, 86: 407-421.
35-Senaratna, T., Touchell, D., Bunn, E. and Dixon, K. 2000. Acetyl salicylic
acid (asprin) and salicylic acid induce multiple stress tolerance in bean and tomato
plants. Plant Growth Regulation, 30: 157-161.
36-Shabala, S. 2000. Ionic and osmotic components of stress specifically
modulate net in fluxes from bean leaf mesophyll. Plant Cell and Environment, 23:
825-837.
37-Surasak, S. I., Samuel, T., Desh Pal, S. and Richard, T. S. 2002. Molecular
mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic
microalgae. Plant Cell, 14: 2837-2847.
38-Venkatesan, A. and Sridevi, S. 2009. Response of antioxidant metabolism to
NaCl stress in the halophyte salicornia brachiata roxb. Journal of Phytology, 4:
242-248.
39-Walia, H., Wilson, C., Zeng, L., Ismail, A. M., Condamine, P. and Close,
T. J. 2007. Genome-wide transcriptional analysis of salinity stressed japonica and
indica rice genotypes during panicle initiation stage. Plant Molecular Biolology,
63: 609-62.
40-Wu, H., Wu, X., and Li, Z. 2012. Physiological evaluation of drought stress
tolerance and recovery in cauliflower (Brassica oleraceaL.) seedlings treated with
methyl jasmonate and coronatine. Journal of Plant Growth Regulation, 31: 113–
123.
41-Yasar, F., Ellialtioglu, S. and Yildiz, K. 2008. Effect of salt stress on
antioxidant defense systems, lipid peroxidation, and chlorophyll content in green
bean. Russian Journal of Plant Physiology, 55(6): 782-786.