Effect of foliar application of silica on some physiological traits of (Physorrhynchus chamaerapistrum L.) medicinal plant
Subject Areas : agronomyEbrahim Fani 1 * , Shokoofeh Hajihashemi 2
1 - Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, Iran
2 - Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, Iran
Keywords: Protein, Photosynthetic pigments, Carbohydrate, Photosystems function,
Abstract :
Based on the increasing literatures on medicinal plants and their importance in the food and pharmaceutical industries, the present study was designed to study on the medicinal plant Physorrhynchus chamaerapistrum. Silica (Si) is known as a beneficial element for many plant species. In the present study was designed to study on the effect of potassium silicate treatment on some physiological traits of P. chamaerapistrumare. In this order, foliar application of 10 and 20 mM potassium silicate and distilled water (as control plant) was applied on P. chamaerapistrumare in their natural habitat in Behbahan. After one month, the leaves of the plants were harvested to investigate the physiological responses of the plants to the potassium silicate treatment. Based on the results, Silica treatment had not significant effect on the leaf fluorescence indices, while it significantly increased photosynthetic pigments in P. chamaerapistrumare. Silica treatment did not show a significant effect on the efficiency of photosystem II (Fv / Fm) and the efficiency of both photosystems I and II (PIABS). The levels of chlorophyll a, b and total and carotenoids in silica-treated plants showed a significant increase in Silica treatment, while they did not show any differences between 10 and 20 mM of potassium silicate. The results of the present study acclaimed that silica as an unnecessary mineral element for plant can improve the photosynthetic pigments contents in plants
1-Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principle of protein-dye binding. Analytical
Biochemistry, 72: 248-254.
2 - Cherif, M.; Belanger, R. 1992. Use of potassium silicate amendments in recirculating nutrient
solutions to suppress Pythium ultimum on long English cucumber. Plant Disease, 76: 1008-
1011.
3-DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.t.; Smith, F. 1956. Colorimetric method
for determination of sugars and related substances. Analytical chemistry, 28: 350-356.
4-Gamage, D., Thompson, M., Sutherland, M., Hirotsu, N., Makino, A. and Seneweera, S.
2018. New insights into the cellular mechanisms of plant growth at elevated atmospheric
carbon dioxide concentrations. Plant, Cell & Environment 41(6): 1233-1246.
5-.Hajihashemi, S.; Noedoost, F.; Geuns, J.M.C.; Djalovic, I.; Siddique, K.H.M. 2018. Effect
of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine
cultivars of stevia rebaudiana. Frontiers in Plant Science.
6-Hattori, T.; Inanaga, S.; Araki, H.; An, P.; Morita, S.; Luxová, M.; Lux, A. 2005.
Application of silicon enhanced drought tolerance in sorghum bicolor. Physiologia
Plantarum, 123: 459-466.
7.-Kalaji, H.M.; Bosa, K.; Kościelniak, J.; Żuk-Gołaszewska, K. 2011. Effects of salt stress on
photosystem II efficiency and CO2 assimilation of two Syrian barley landraces.
Environmental and Experimental Botany, 73: 64-72.
8-Kalaji, H.M.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev,
V.; Guidi, L.; Jajoo, A.; Li, P. 2017. Frequently asked questions about chlorophyll
fluorescence, the sequel. Photosynthesis Research, 132: 13-66.
9-Kalaji, H.M.; Račková, L.; Paganová, V.; Swoczyna, T.; Rusinowski, S.; Sitko, K. 2018.
Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between
drought and salinity stress in Tilia cordata Mill? Environmental and Experimental Botany,
152: 149-157.
10-Krause, G.H.; Weis, E. 1984. Chlorophyll fluorescence as a tool in plant physiology.
Photosynthesis Research,:139-157.
11-.Li, H.; Zhu, Y.; Hu, Y.; Han, W.; Gong, H. 2015. Beneficial effects of silicon in alleviating
salinity stress of tomato seedlings grown under sand culture. Acta Physiologiae Plantarum,
37: 71.
ررررررر12-Lichtenthaler, H.K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic
biomembranes. In: Methods in enzymology. vol. 148: Elsevier- .350-382.
13-Lotfi, R.; Pessarakli, M.; Gharavi-Kouchebagh, P.; Khoshvaghti, H. 2015. Physiological
responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence
and antioxidant enzyme activity. The Crop Journal, 3: 434-439.
14-Maghsoudi, K.; Emam, Y.; Pessarakli, M. 2016. Effect of silicon on photosynthetic gas
exchange, photosynthetic pigments, cell membrane stability and relative water content of
different wheat cultivars under drought stress conditions. Journal of Plant Nutrition, 39:
1001-1015.
15- Marwat, S.K.; Rehman, F. 2011. Medicinal folk recipes used as traditional phytotherapies in
district Dera Ismail Khan, KPK, Pakistan. Pak J Bot, 43: 1453-1462.
16-.Popovic, R.; Dewez, D.; Juneau, P. 2003. Applications of chlorophyll fluorescence in
ecotoxicology: heavy metals, herbicides, and air pollutants. In: Practical applications of
chlorophyll fluorescence in plant biology. Springer;: 151-184.
17-Schobert, B.; Tschesche, H. 1978. Unusual solution properties of proline and its interaction
with proteins. Biochimica et Biophysica Acta (BBA)-General Subjects, 541: 270-277.
18-.Shafiq, S.; Akram, N.A.; Ashraf, M.; Arshad, A. 2014. Synergistic effects of drought and
ascorbic acid on growth, mineral nutrients and oxidative defense system in canola
(Brassica napus L.) plants. Acta Physiologiae Plantarum, 36: 1539-1553.
19-Shah, A.; Marwat, S.K.; Gohar, F.; Khan, A.; Bhatti, K.H.; Amin, M.; Din, N.U.; Ahmad,
M. ;Zafar, M. 2013. Ethnobotanical study of medicinal plants of semi-tribal area of
Makerwal & Gulla Khel (lying between Khyber Pakhtunkhwa and Punjab Provinces),
Pakistan.
20.-Sharma, D. K., Fernández, J. O., Rosenqvist, E., Ottosen, C.-O. and Andersen, S. B.
2014. Genotypic response of detached leaves versus intact plants for chlorophyll
fluorescence parameters under high temperature stress in wheat. Journal of plant
physiology 171(8): 576-586.
21-Shen, X.; Zhou, Y.; Duan, L.; Li, Z.; Eneji, A.E.; Li, J. 2010. Silicon effects on
photosynthesis and antioxidant parameters of soybean seedlings under drought and
ultraviolet-B radiation. Journal of Plant Physiology, 167: 1248-1252.
22-www.irimo.ir
23- Yordanov, I.; Velikova, V.; Tsonev, T. 2000. Plant responses to drought, acclimation, and
stress tolerance. Photosynthetica, 38: 171-186.
24- Zivcak, M., Brestič, M., Olšovská, K. and Slamka, P. 2008. Performance index as a
sensitive indicator of water stress in Triticum aestivum L. L. Plant Soil Environ 54(4):
133-139.
10012-Lichtenthaler, H.K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic
biomembranes. In: Methods in enzymology. vol. 148: Elsevier- .350-382.
13-Lotfi, R.; Pessarakli, M.; Gharavi-Kouchebagh, P.; Khoshvaghti, H. 2015. Physiological
responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence
and antioxidant enzyme activity. The Crop Journal, 3: 434-439.
14-Maghsoudi, K.; Emam, Y.; Pessarakli, M. 2016. Effect of silicon on photosynthetic gas
exchange, photosynthetic pigments, cell membrane stability and relative water content of
different wheat cultivars under drought stress conditions. Journal of Plant Nutrition, 39:
1001-1015.
15- Marwat, S.K.; Rehman, F. 2011. Medicinal folk recipes used as traditional phytotherapies in
district Dera Ismail Khan, KPK, Pakistan. Pak J Bot, 43: 1453-1462.
16-.Popovic, R.; Dewez, D.; Juneau, P. 2003. Applications of chlorophyll fluorescence in
ecotoxicology: heavy metals, herbicides, and air pollutants. In: Practical applications of
chlorophyll fluorescence in plant biology. Springer;: 151-184.
17-Schobert, B.; Tschesche, H. 1978. Unusual solution properties of proline and its interaction
with proteins. Biochimica et Biophysica Acta (BBA)-General Subjects, 541: 270-277.
18-.Shafiq, S.; Akram, N.A.; Ashraf, M.; Arshad, A. 2014. Synergistic effects of drought and
ascorbic acid on growth, mineral nutrients and oxidative defense system in canola
(Brassica napus L.) plants. Acta Physiologiae Plantarum, 36: 1539-1553.
19-Shah, A.; Marwat, S.K.; Gohar, F.; Khan, A.; Bhatti, K.H.; Amin, M.; Din, N.U.; Ahmad,
M. ;Zafar, M. 2013. Ethnobotanical study of medicinal plants of semi-tribal area of
Makerwal & Gulla Khel (lying between Khyber Pakhtunkhwa and Punjab Provinces),
Pakistan.
20.-Sharma, D. K., Fernández, J. O., Rosenqvist, E., Ottosen, C.-O. and Andersen, S. B.
2014. Genotypic response of detached leaves versus intact plants for chlorophyll
fluorescence parameters under high temperature stress in wheat. Journal of plant
physiology 171(8): 576-586.
21-Shen, X.; Zhou, Y.; Duan, L.; Li, Z.; Eneji, A.E.; Li, J. 2010. Silicon effects on
photosynthesis and antioxidant parameters of soybean seedlings under drought and
ultraviolet-B radiation. Journal of Plant Physiology, 167: 1248-1252.
22-www.irimo.ir
23- Yordanov, I.; Velikova, V.; Tsonev, T. 2000. Plant responses to drought, acclimation, and
stress tolerance. Photosynthetica, 38: 171-186.
24- Zivcak, M., Brestič, M., Olšovská, K. and Slamka, P. 2008. Performance index as a
sensitive indicator of water stress in Triticum aestivum L. L. Plant Soil Environ 54(4):
133-139.
10012-Lichtenthaler, H.K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic
biomembranes. In: Methods in enzymology. vol. 148: Elsevier- .350-382.
13-Lotfi, R.; Pessarakli, M.; Gharavi-Kouchebagh, P.; Khoshvaghti, H. 2015. Physiological
responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence
and antioxidant enzyme activity. The Crop Journal, 3: 434-439.
14-Maghsoudi, K.; Emam, Y.; Pessarakli, M. 2016. Effect of silicon on photosynthetic gas
exchange, photosynthetic pigments, cell membrane stability and relative water content of
different wheat cultivars under drought stress conditions. Journal of Plant Nutrition, 39:
1001-1015.
15- Marwat, S.K.; Rehman, F. 2011. Medicinal folk recipes used as traditional phytotherapies in
district Dera Ismail Khan, KPK, Pakistan. Pak J Bot, 43: 1453-1462.
16-.Popovic, R.; Dewez, D.; Juneau, P. 2003. Applications of chlorophyll fluorescence in
ecotoxicology: heavy metals, herbicides, and air pollutants. In: Practical applications of
chlorophyll fluorescence in plant biology. Springer;: 151-184.
17-Schobert, B.; Tschesche, H. 1978. Unusual solution properties of proline and its interaction
with proteins. Biochimica et Biophysica Acta (BBA)-General Subjects, 541: 270-277.
18-.Shafiq, S.; Akram, N.A.; Ashraf, M.; Arshad, A. 2014. Synergistic effects of drought and
ascorbic acid on growth, mineral nutrients and oxidative defense system in canola
(Brassica napus L.) plants. Acta Physiologiae Plantarum, 36: 1539-1553.
19-Shah, A.; Marwat, S.K.; Gohar, F.; Khan, A.; Bhatti, K.H.; Amin, M.; Din, N.U.; Ahmad,
M. ;Zafar, M. 2013. Ethnobotanical study of medicinal plants of semi-tribal area of
Makerwal & Gulla Khel (lying between Khyber Pakhtunkhwa and Punjab Provinces),
Pakistan.
20.-Sharma, D. K., Fernández, J. O., Rosenqvist, E., Ottosen, C.-O. and Andersen, S. B.
2014. Genotypic response of detached leaves versus intact plants for chlorophyll
fluorescence parameters under high temperature stress in wheat. Journal of plant
physiology 171(8): 576-586.
21-Shen, X.; Zhou, Y.; Duan, L.; Li, Z.; Eneji, A.E.; Li, J. 2010. Silicon effects on
photosynthesis and antioxidant parameters of soybean seedlings under drought and
ultraviolet-B radiation. Journal of Plant Physiology, 167: 1248-1252.
22-www.irimo.ir
23- Yordanov, I.; Velikova, V.; Tsonev, T. 2000. Plant responses to drought, acclimation, and
stress tolerance. Photosynthetica, 38: 171-186.
24- Zivcak, M., Brestič, M., Olšovská, K. and Slamka, P. 2008. Performance index as a
sensitive indicator of water stress in Triticum aestivum L. L. Plant Soil Environ 54(4):
133-139.
100
_||_