The efficiency of Fe3O4 nanoparticles coated with humic acid on tomato growth characteristics (Lycopersicon esculentum L.)
Subject Areas : Journal of Plant EcophysiologyTahereh Raiesi ardali 1 , leila Ma'mani 2 , mostafa chorom 3 , abdolamir moezzi 4
1 - 3Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran,
2 - 2Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran, leila.mamani@abrii.ac.ir
3 - Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran,
4 - Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Keywords: Humic acid, Tomato, Composite, Iron, Nanofertilizer,
Abstract :
Iron is one of the essential elements for plant growth. Iron deficiency is one of the problems of calcareous soils in Iran. In order to investigate the effect of iron nanoparticle composite coated with humic acid on the agricultural characteristics of tomato plants, a factorial greenhouse experiment was conducted in the form of a completely randomized design with three replications. The test factors include the first factor, the type of iron fertilizer (iron sulfate and iron nanoparticles Fe3O4), the second factor of humic acid (use of humic acid and the absence of use of humic acid), the third factor of iron concentrations (0, 25, 50, 75, 100, 200) mg/kg. Infrared spectroscopy results showed that nanoparticles coated with humic acid behaved differently than iron nanoparticles due to the creation of new functional groups. Also, the results showed that Fe3O4 nanoparticles coated with humic acid at a concentration of 50 mg/kg caused a significant increase in plant height (31%), shoot fresh weight (68%), and iron concentration in the plant by 2.4 times) compared to the control treatment (treatment without fertilizer). The results of this research show that applying Fe3O4 nanoparticles coated with humic acid for agricultural products can improve the agronomic characteristics of tomatoes, so this fertilizer can be introduced as a suitable option for providing the iron needed by the plant.
سـلطانی، ا.، ع. رضـایی و م. ر. خواجـه پـور. 1380. تنوع ژنتیکی برای برخـی از صـفات فیزیولوژیـک و زراعـی در سـورگوم دانـه ای. مجلـة علـوم و فنـون کشاورزی و منابع طبیعی. جلد 5، شماره 1: 137-127.
شهبازی، ک. و ح. بشارتی.1392. بررسی اجمالی وضعیت حاصلخیزی خاکهای کشاورزی ایران. نشریه مدیریت اراضی جلد 1، شماره 1: 1-15.
صالح، ج.، ح. حسن زاده خانکهدانی، م. عسکری سیاهویی، م. م. مقیمی، ا. محمد پور، ی. حسینی و ع. شهریاری .1396. دستورالعمل تولید گوجه فرنگی در استان هرمزگان. 14 صفحه.
Alloway, B.J .2008. Micronutrients and crop production: an introduction. In: Alloway BJ (ed) Micronutrient deficiencies in global crop production. Springer, Dordrecht. pp 1–39.
Askary, M., S.M. Talebi, F. Amini and A.D.B. Bangan. 2017. Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija. 63(1):65-75.
Banijamali, S.M., M. Feizian, A. Alinejadian Bidabadi and E. Mehdipour. 2019. Effect of Magnetite Nanoparticles on Vegetative Growth, Physiological Parameters and Iron Uptake in Chrysanthemum (Chrysanthemum morifolium) ‘Salvador’. J. Ornam. Hortic. 9(2): 129-142.
Bertamini, M., K. Muthuchelian and N. Nedunchezhian. 2002. Iron deficiency induced changes on the donor side of PS II in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. Plant Sci. 162(4): 599-605.
Bihon, W., K. E. Ognakossan, J.B. Tignegre, P. Hanson, K. Ndiaye and R. Srinivasan. 2022. Evaluation of Different Tomato (Solanum lycopersicum L.) Entries and Varieties for Performance and Adaptation in Mali, West Africa. J. Hortic. 8(7):579.
Bradford, N. A.1976. rapid and sensitive method for the quantitation microgram quantities of a protein isolated from red cell membranes. Anal Biochem. 72, 248-254.
Canellas, L.P., F.L. Olivares, N.O. Aguiar, D.L. Jones, A. Nebbioso, P. Mazzei and A. Piccolo, , 2015. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 196:15-27.
Cifuentes, Z., L. Custardoyde, J.M. la Fuente, C. Marquina, M.R Ibarra, D. Rubiales and A. Pérez-de-Luque. 2010. Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J. Nanobiotechnol. 8: 1-8.
El‐Temsah, Y.S and E.J. Joner. 2012. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 27(1): 42-49.
Emame A. 1998. Methods of Plant Chemical Analysis. Soil and Water Research Institute. 982 p.
FAOSTAT. 2021. Statistical Database of the Food and Agriculture of the United Nations. FAO, Rome, Italy.
Farshchi, H.K., M. Azizi, M. Teymouri, A.R. Nikpoor and M.R. Jaafari. 2021. Synthesis and characterization of nanoliposome containing Fe2+ element: A superior nano-fertilizer for ferrous iron delivery to sweet basil. Sci. Hortic. 283:110110.
Friedly, J.C., D.B. Kent and J.A. Davis. 2002. Simulation of the mobility of metal− EDTA complexes in groundwater: The influence of contaminant metals. Environ. Sci. Technol. 36(3):355-363.
Ghormade, V., M.V. Deshpande and K.M. Paknikar. 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29(6):792-803.
Hakan, C., A. Vahap Katkat, B. Bulent Asık and M. A. Turan. 2011. Effect of Foliar Applied Humic Acid to Dry Weight and Mineral Nutrient Uptake of Maize under Calcareous Soil Conditions Communications. J. Soil Sci. 42(1): 29 – 38.
Helmke, P.A and D.L. Sparks. 1996. Lithium, sodium, potassium, rubidium, and cesium. Methods of soil analysis: Part 3 chemical methods. 5:551-574.
Hu, J., H. Guo, J. Li, Q. Gan, Y. Wang and B. Xing. 2017. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environ. Pollut. 221:199-208.
Ito, T., L. Sun, M.A. Bevan and R.M. Crooks. 2004. Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir. 20(16):6940-6945.
Khalid, U., F. Sher, S. Noreen, E.C. Lima, T. Rasheed, S. Sehar and R. Amami. 2021. Comparative effects of conventional and nano-enabled fertilizers on morphological and physiological attributes of Caesalpinia bonducella plants. J. Saudi Soc. Agric. Sci. 21(1): 61-72.
Kheiri Manjili, H., L. Ma’mani, S. Tavaddod, M. Mashhadikhan, A. Shafiee and H. Naderi-Manesh. 2016. D, L-sulforaphane loaded Fe3O4@ gold core shell nanoparticles: a potential sulforaphane delivery system. PLoS One. 11: 0151344.
Kulikova, N.A., A.Y. Polyakov, V.A. Lebedev, D.P. Abroskin, D.S. Volkov, D.A. Pankratov, O.I. Klein, S.V. Senik, T.A. Sorkina, A.V. Garshev and A.A. Veligzhanin. 2017. Key roles of size and crystallinity of nanosized iron hydr (oxides) stabilized by humic substances in iron bioavailability to plants J. Agric. Food. Chem. 65(51):11157-11169.
Li, J., J. Hu, C. Ma, Y. Wang, C. Wu, J. Huang and B. Xing. 2016. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere. 159:326-334.
Li, J., J. Hu, L. Xiao, Y. Wang and X. Wang. 2018. Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings. Sci. Total Environ. 625 :677-685.
Li, J., Y. Ma and Y. Xie. 2021. Stimulatory Effect of Fe3O4 Nanoparticles on the Growth and Yield of Pseudostellaria heterophylla via Improved Photosynthetic Performance. HortScience. 56(7):753-761.
Murphy, J.A. M.E.S and J.P. Riley .1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27:31-36.
Nikolic, M., Cesco, S., Römheld, V., Varanini, Z. and R. Pinton .2003. Uptake of iron (59Fe) complexed to water‐extractable humic substances by sunflower leaves. J. Plant Nutr. 26(10-11):2243-2252.
Orlowska, E., A. Roller, M. Pignitter, F. Jirsa, R. Krachler, W. Kandioller and B.K. Keppler. 2017. Synthetic iron complexes as models for natural iron-humic compounds: synthesis, characterization and algal growth experiments. Sci. Total Environ. 577:94-104
Peng, L., P. Qin, M. Lei, Q. Zeng, H.Song, J. Yang, J .Shao, B. Liao and J. Gu .2012. Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J. Hazard. Mater. 209:193-198.
Rico, C.M., S. Majumdar, M. Duarte-Gardea, J.R. Peralta-Videa and J.L. Gardea-Torresdey .2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 59(8):3485-3498.
Sims, J. T. and G. V. Johnson.1991. "Micronutrient soil tests." Micronutrients in agriculture. 427-476.
Siva, G.V and L.F.J. Benita .2016. Iron oxide nanoparticles promotes agronomic traits of ginger (Zingiber officinale Rosc.). Int. J. Adv. Res. Biol. Sci. 3(3):230-237.
Suzuki, M., A. Urabe, S. Sasaki, R. Tsugawa, S. Nishio, H. MukaiyamaY. Murata, H. Masuda, M.S. Aung, A. Mera and M. Takeuchi. 2021. Development of a mugineic acid family phytosiderophore analog as an iron fertilizer. Nat. Commun. 12 (1) :1558.
Tawfik, M.M., M.H. Mohamed, M.S. Sadak and A.T. Thalooth. 2021. Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bull. Natl. Res. Cent. 45(1):1-9.
Tewari, R.K., P. Kumar and P.N. Sharma. 2005. Signs of oxidative stress in the chlorotic leaves of iron starved plants. Plant Sci. J. 169(6):1037-1045.
Üstün, E., S.C. Önbaş, S.K. Çelik, M.Ç. Ayvaz and N. Şahin. 2022. Green synthesis of iron oxide nanoparticles by using Ficus carica leaf extract and its antioxidant activity. Biointerface Res. Appl. Chem. 12:2108-2116.
Vione, D., F. Merlo, V. Maurino and C. Minero. 2004. Effect of humic acids on the Fenton degradation of phenol. Environ. Chem. Lett. 2: 129-133.
Yan, L., P. Li, Zhao, X. Ji. R. and L. Zhao. 2020. Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles. Sci. Total Environ. 718:137400.
Ylivainio, K. 2010. Effects of iron (III) chelates on the solubility of heavy metals in calcareous soils. Environ. Pollut. 158(10):3194-3200.
Yoon, H., Y.G. Kang, Y.S. Chang and J.H. Kim. 2019. Effects of zerovalent iron nanoparticles on photosynthesis and biochemical adaptation of soil-grown Arabidopsis thaliana. J. Nanomater. 9(11):1543.
Zia-ur-Rehman, M., A. Naeem, H. Khalid, M. Rizwan, S.Ali and M. Azhar. 2018. Responses of plants to iron oxide nanoparticles. In Nanomater. Plants, Algae, Microorg. 221-238. Academic Press.
_||_