Evaluation of genotypic variation for seed iron content and concentration in barley genotypes under dryland conditions
Subject Areas : Journal of Plant Ecophysiologymehdi feizi 1 * , mahmood solouki 2 , behzad sadeghzadeh 3 , baratali fakheri 4 , seyed abolghasem mohammadi 5
1 - Department of Plant Breeding and Biotechnology, Zabol University, Zabol, Iran
2 - Department of Plant Breeding and Biotechnology, Zabol University, Zabol, Iran.
3 - Agricultural Drought Research Institute of Iran, Maragheh, Iran
4 - Department of Plant Breeding and Biotechnology, Zabol University, Zabol, Iran.
5 - Department of Plant Breeding and Biotechnology, Tabriz University, Tabriz, Iran
Keywords: genetic diversity, Barley seed, Iron accumulation, Iron absorption efficiency, Native genotype,
Abstract :
Drought stress and iron (Fe) deficiency are abiotic stress factors limiting crop production and its quality, especially in rainfed areas. With the aim of evaluation of genotypic variation for Fe efficiecny, 121 barley genotypes during the growing season of 2015-2016, a research farm was carried out at the agricultural research institute of the dryland (Maragheh) were studied under rainfed field conditions. . The experiment was conducted in square lattice. Based on ANOVA, there was significant differences among genotypes for seed Fe concentartion and content traits. The high range of variation for these traits showed that there is a great genotypic variation among barley genotypes. The existance of high general heritability (h2) for seed Fe concentration and content could be helpful in breeding for these traits under different environments. Seed Fe concentration had significant and positive correlation (r=0.63**) with seed Fe content. In short, the result of this study revealed the great genotypic variation among barley genotypes for Fe absorption and accumulation in seed. Moreover, the efficient genotypes could alleviate drought stress that will result in higher grain yield with Fe-dense grains under cold dryland conditions.
آمارنامه کشاورزی . 1390. معاونت برنامه ریزی و اقتصاد وزارت جهاد کشاورزی، جلد اول (محصولات زراعی و باغی).
بلالی، م.ر.، م.ج. ملکوتی، ح.ح. مشایخی، ز. خادمی. 1378. اثر عناصر ریزمغذی بر افزایش عملکرد و تعیین حد بحرانی آنها در خاکهای تحت کشت گندم آبی ایران. مجله خاک و آب، ویژه نامه گندم، 119-111:(6)12.
فیضیاصل، و.، ر. کسرایی، م. مقدم و غ. ولیزاده. 1383. بررسی تشخیص کمبود و محدودیتهای جذب عناصر غذایی با استفاده از روش های مختلف با مصرف کودهای فسفر و روی برای گندم دیم رقم سرداری. مجله علوم کشاورزی و منابع طبیعی دانشگاه گرگان. 11 (3). ص: 33-23.
ضیائیان، ع.ح.، م.ج. ملکوتی. 1378. تاثیر مصرف روی بر رشد و عملکرد گندم در تعدادی از خاکهای شدیداْ آهکی استان فارس.خاک و آب. ویژه نامه گندم، 110-99 :(6)12.
علیاحیائی، م. 1372. شرح روشهای تجزیه خاک (جلد اول). موسسه تحقیقات خاک و آب، نشریه شماره 893 .
محمودی، ح. 1394. نتایج آمار هواشناسی ایستگاههای تحقیقات کشاورزی دیم سال زراعی.
Abdolrahmani, B., K. Ghassemi-Golezani, M. Valizadeh, V. Feizi-Asl and A.R. Tvakoli. 2009. Effects of seed priming on seed vigor and grain yield of barley (Hordeum vulgare L. cv. Abidar) in rainfed conditions. Iranian Journal of Crop Sciences 11: 337-352.
Alloway, B.J. 2004. Zinc in Soils and Crop NutritionInternational Zinc Association Communications. IZA publications, Brussels, Belgium.
Baligar, V.C., N.K. Fageria and Z.L. He. 2001. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal 32: 921-950.
Bansal, R.L., S.P. Singh and V.K. Nayyar. 1990. The critical zinc deficiency level and response to zinc application of wheat on Typic Ustochrepts. Exp. Agric. 26: 303-306.
Bouis, H.E. 2007. The potential of genetically modified food crops to improve human nutrition in developing countries. J Dev Stud 43: 79-96.
Cakmak, I., A. Yilmaz, M. Kalayci, H. Ekiz, B. Torun, B. Erenoglu, et al. 1996. Zinc deficiency as a critical problem in wheat production in central Anatolia. Plant Soil 180: 165-172.
Cakmak, I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. The New Phytologist 146: 185-205.
Cakmak, I. and H.J. Braun. 2001. Genotypic variation for zinc efficiency. In: M. P. Reynolds, J. I. Ortiz-Monasterio and A. McNab, editors, Application of Physiology in Wheat Breeding. D.F. CIMMYT, pp. 183-199, Mexico. p. 183-199.
Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302: 1-17.
Chen, W.R., Z.L. He, X.E. Yang and Y. Feng. 2009. Zinc Efficiency is Correlated with Root Morphology, Ultrastructure, and Antioxidative Enzymes in Rice. J. Plant Nutr. 32: 287-305.
Dong, B., Z. Rengel and R.D. Graham. 1995. Root morphology of wheat genotypes differing in zinc efficiency. J. Plant Nutr. 18: 2761-2773.
Fageria, N.K., V.C. Baligar and R.B. Clark. 2002. Micronutrients in crop production. Adv. Agron 77: 185-267.
Genc, Y., G.K. McDonald and R.D. Graham. 2002. Critical deficiency concentration of zinc in barley genotypes differing in zinc efficiency and its relation to growth responses. J. Plant Nutr. 25: 545-560.
Gregorio, G.B. 2002. Progress in breeding for trace minerals in staple crops. J. Nutr. 132: 500S-502S.
Hajiboland, R., B. Singh and V. Romheld. 2001. Retranslocation of Zn from leaves as important contributing factor for zinc efficiency of rice genotypes. In: W. J. Horst, M. K. Schenk, A. Bürkert, N. Claassen, H. Flessa, W. B. Frommer, H. E. Goldbach, H. W. Olfs, V. Römheld, B. Sattelmacher, U. Schmidhalter, S. Schubert, N. v. Wirén and L. Wittenmayer, editors, Plant Nutrition - Food Security and Sustainability of Agro-ecosystems. Kluwer, Dordrecht, The Netherlands. p. 226-227.
Hotz, C. and K.H. Brown. 2004. Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin 25: 94-204.
Hotz, C. 2009. The potential to improve zinc status through biofortification of staple food crops with zinc. Food & Nutrition Bulletin 30: 172S-178S.
Liao, M.T., P.J. Hocking and B. Dong. 2005. Screening for genotypic variation in P uptake efficiency in cereals on Australian soils. In: Li, editor Plant nutrition for food security, human health and environmental protection. Tsinghua University Press. Beijing, China.
Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2 ed. Academic Press, London.
Marschner, H. 1998. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res. 56: 203-207.
Murungu, F.S. and T. Madanzi. 2010. Seed priming, genotype and sowing date effects on emergence, growth and yield of wheat in a tropical low altitude area of Zimbabwe. African Journal of Agricultural Research 5: 2341-2349.
Peleg, Z., Y. Saranga, A. Yazici, T. Fahima, L. Ozturk and I. Cakmak. 2007. Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil.
Rengel, Z. 1995. Carbonic anhydrase activity in leaves of wheat genotypes differing in Zn efficiency. J. Plant Physiol. 147: 251-256.
Rengel, Z. 1995. Sulfhydryl groups in root-cell plasma membranes of wheat genotypes differing in Zn efficiency. Physiol. Plant. 95: 604-612.
Rengel, Z. and R.D. Graham. 1996. Uptake of zinc from chelate-buffered nutrient solutions by wheat genotypes differing in zinc efficiency. Journal of Experimental Botany 47: 217-226.
Sadeghzadeh, B., Z. Rengel and C. Li. 2008. Mapping of chromosome regions associated with seed Zn accumulation in barley, PhD thesis. The University of Western Australia, Perth.
Sadeghzadeh, B., Z. Rengel and C. Li. 2009. Differential zinc efficiency of barley genotypes grown in soil and chelator-buffered nutrient solution. J. Plant Nutr. 32: 1744 - 1767.
Sadeghzadeh, B. and Z. Rengel. 2011. Zinc in soils and crop nutrition. In: M. J. Hawkesford and P. B. Barraclough, editors, The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops. Wiley. p. 335-375.
Sadeghzadeh, B. 2013. A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition 13: 905-927.
Sadeghzadeh, B., N. Sadeghzadeh and E. Sepehr. 2016. Barley genotypes differing in zinc efficiency when grown in various soil types. International Journal of Plant & Soil Science 12: 1-13.
Sadeghzadeh, B., G. Valizadeh. 2016. Soil-zinc application alleviates drought stress to improve bread and durum wheat production under cold rainfed conditions. 15th International Cereal and Bread Congress, 18-21 Apr. 2016, Istanbul, Turkey.
Samarah, N., R. Mullen and S. Cianzio. 2004. Size distribution and mineral nutrients of soybean seeds in response to drought stress. J. Plant Nutr. 27: 815-835.
Wissuwa, M., A.M. Ismail and S. Yanagihara. 2006. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol. 142: 731-741.
_||_