Investigation on the effect of seed priming with rhizobium bioinoculant and Plant Growth Promoting Rhizobacteria on chlorophyll, nutrients and grain yield in lentil under rainfed condition
Subject Areas : Journal of Plant EcophysiologyAlireza Seyyed-Moradi 1 , Afshin Mozaffari 2 *
1 - Masters student, Agronomy and plant breeding department, Ilam branch, Islamic Azad university, Iran
2 - Assistant Professor, Agronomy and plant breeding department, Ilam branch, Islamic Azad university, Iran
Keywords: Azotobacter, Lentil, Azospirillum, Pseudomonas, Rhizobium,
Abstract :
To study the effect of seed priming with rhizobium bioinoculant and Plant Growth Promoting Rhizobacteria on chlorophyll, nutrients and grain yield in lentil rainfed, a factorial experiment was carried out in a randomized complete block design (RCBD) with four replicates in Karazan districts of Sirvan located in Ilam province during 2016-2017. Experimental treatments include the application of PGPR consists of five levels: inoculation seed with Azotobacter, Azospirillum, Pseudomonas individually, inoculation of seeds with mixed PGPR (Azotobacter + Azospirillum + Pseudomonas) and non-using of PGPR, and rhizobium bacteria factor at two levels: seed inoculation with rhizobium and non-use of Rhizobium. Simple and interaction effects of Rhizobium bacteria and PGPR bacteria application on all studied traits (except for interaction effect of experimental factors on grain yield and chlorophyll b content) showed highly significant (P <0.01). In general, the results of the experiment showed that the use of Rhizobium bacteria with PGPR bacteria, in particular, combined consumption treatment (Azotobacter + Azospirillum + pseudomonas), increased the grain yield, nitrogen, phosphorus and potassium, and chlorophyll a, b and a+b contents of leaf compared to Non-use rhizobium and PGPR bacteria. With regard to synergistic effects of Rhizobium and PGPR bacteria in improving the growth and grain yield of lentil plant, it is recommended to use the combination of Rhizobium and PGPR bacteria in the inoculum formulation used under arid and dry land areas.
اصغرزاده، ا، صالح راستین، ن و محمدی، م. 1377. بررسی پتانسیل تثبیت نیتروژن گونههای بومی Mesorhizobium ciceri همزیست با دو رقم نخود (Cicer arietinum) در ایران. مجله خاک و آب، جلد 12: ص 1-8.
باقری، ع.، گلدانی، م. و حسن زاده، م. 1376. زراعت و ا صلاح عدس (ترجمه). انتشارات دانشگاه مشهد.
پارسا، م. و باقری، ع. 1387. حبوبات. انتشارات جهاد دانشگاهی مشهد.
پورمحمد، ع. و مظفری، ا. 1395. بررسی تأثیر تلقیح رایزوبیایی و روش مصرف باکتری های بهبود دهنده رشد گیاه (PGPR) بر میزان نیتروژن، فسفر و پتاسیم و کلروفیل برگ نخود در شرایط دیم. دومین همایش ملی مدیریت پایدار منابع خاک و محیط زیست، 17 و 18 شهریورماه 1395. دانشگاه شهید باهنر کرمان.
راثی پور، ل. و اصغرزاده، ع. 1386. اثرات متقابل باکتری های حل کننده فسفات و Bradyrhizobium japonicum بر شاخصهای رشد، غده بندی و جذب برخی عناصرغذایی در سویا، مجله علوم و فنون کشاورزی و منابع طبیعی شماره 40 ص 53-64.
سلیمانی، ر. و اصغر زاده، ا. 1389. تأثیر تلقیح مزوریزوبیوم و مصرف کود بر عملکرد و اجزای عملکرد نخود دیم. نشریه پژوهش های حبوبات ایران جلد 1 شماره1، ص 1-8.
صالح راستین، ن. 1357. بیولوژی خاک. انتشارات دانشگاه تهران، 482 صفحه.
مظفری، ا.، حبیبی، د.، اصغرزاده، ا. و مشهدی اکبر بوجار، م. 1395. بررسی تحمل به تنش خشکی دو رقم گندم تلقیح شده با رایزوباکتریهای محرک رشد گیاه تحت شرایط گلخانه. مجله فیزیولوژی گیاهان زراعی دوره 8 شماره 31. ص 21-29.
Andrade, M.M.M., N.P., Stamford, C.E.R.S., Santos, A.D.S., Freitas, C.A., Sousa and M.A.L., Junior. 2013. Effects of biofertilizer with diazotrophic bacteria and mycorrhizal fungi in soil attribute, cowpea nodulation yield and nutrient uptake in field conditions. Scientia Horticulturae. 162: 374-379.
Anonymous. 2002. Determination of crude protein in cereals and cereal products for food and for fed. Standard methods of the international association for cereal science and technology. ICC Standard No:105/2, Viena.
Aseri, G.K., N., Jain, J., Panwar, A.V., Rao and P.R., Meghwal. 2008. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum L.) in Indian Thar Desert. Scientia Horticulturae. 117: 130-135.
Asgharzadeh, A., N., SalehRastin and M., Mohammadi. 1999. Investigation of potential of symbiosis nitrogen fixation of indigenous Mesorhizobium ciceri with two varieties of Cicer arietinum in Iran. Soil and Water. 12: 1-8.
Bhattacharjya, S. and R., Chandra. 2013. Effect of inoculation methods of Mesorhizobium ciceri and PGPR in chickpea (Cicer areietinum L.) on symbiotic traits, yields, nutrient uptake and soil properties. Legume Research. 36(4): 331-337.
Boddey, R.M. and J., Dobereiner. 1988. Nitrogen fixation associated with grasses and cereals: Recent results and perspective for future research. Plant and Soil. 108: 53-65.
Bremer, E., C.V., Kessel, L.K.J., Nelson and D.A., Rennie. 1990. Selection of Rhizobium leguminosarum strains for lentil (Lens culinaris) under growth room and field condition. Plant and Soil. 121: 47-56.
Chapman, H.D. and F.P., Pratt. 1987. Ammonium vandate-molybdate method for determination of phosphorus. In: Methods of analysis for soils, plants and water. 1st Ed. California: California University, Agriculture Division, pp: 184-203.
Dashti, N., F., Zhang, R., Hynes and D.L., Smith. 1998. Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant and Soil. 200: 205-213.
Dubey, S.K. 1996. Combined effect of Bradyrhizobium japonicum and phosphate–solubilizing Pseudomonas striata on nodulation, yield attributes and yield of rainfed soyabean (Glycine max) under different sources of phosphorus in Vertisols. Indian Journal of Microbiology. 33: 61-65.
Dudeja, S.S., N.P. Singh, Poonam Sharma, S.C. Gupta,. Ramesh Chandra, Bansi Dhar, R.K. Bansal, G.P. Brahmaprakash,. S.R. Potdukhe, R.C. Gundappagol, B.G. Gaikawad and K.S. Nagaraj. 2011. Biofertilizer Technology and Pulse Production. In: Bioaugmentation, Biostimulation and Biocontrol. (A. Singh et al. Eds.), Springer-Verlag Berlin Heidelberg, pp 43-63.
Glick, B.R. 1995. The enhancement of plant growth by free-Living bacteria. Canadian Journal of Microbiology. 41:109-117.
Gull, M., F.Y., Hafeez, M., Saleem and K.A., Malik. 2004. Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture. Australian Journal of Experimental Agriculture. 44: 623-628.
Halder, A.K. 1990. Solublelization of rock phosphate by Rhizobium and Bradyrhizobium. Journal of Application Microbial. 36: 81-92.
Jayas, D.S., S., Sokhansanj and N.D.G., White. 1989. Bulk density and porosity of two canola species. Trans. ASAE. 32: 291-294.
Illmer, P. and F., Schinner. 1995. Solubilization of inorganic calcium phosphates. Soil Biology and Biochemistry. 46: 257-263.
Kennedy, I.R., A.T.M.A., Choudhury and M.L., Kecskes. 2004. Non-symbiotic bacterial diazotrophs in crop farming systems: Can their potential for plant growth promotion be better exploited. Soil Biology and Biochemistry. 36: 1229-1244.
Khanna, V., P., Sharma and S., Sharma. 2011. Studies on synergism between Rhizobium and plant growth promoting rhizobacteria in lentil (Lens culinaris Medikus). Journal of Food Legumes. 24: 158-59.
Kloepper, J.W. and M.N., Schroth. 1998. Plant growth promoting rhizobacteria on radishes. IV. International Conference on Plant Pathogenic Bacteria. Angers France. 2: 879-882.
Lifshitz, R., I.W., Kloepper and H., Kozlowski. 1987. Growth promotion of canola (rapeseed) seedling by a strain of Pseudomonas putida under genobiotic conditions. Canadian Journal of Microbiology. 33: 390-395.
Mahanta, D. and R.K., Rai 2008. Effects of sources of phosphorus and biofertilizers on productivity and profitability of soybean (Glycine max)–wheat (Triticum aestivum) system. Indian Journal of Agronomy. 53: 279-284.
Meena, V.S., B.R., Maurya and J.P., Verma. 2014. Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiological Research. 169: 337-347.
Mia M.B., Z.H., Shamsuddin, W., Zakaria and M., Marziah. 2009. The effect of rhizobacterial inoculation on growth and nutrient accumulation of tissue-cultured chickpea plantlets under low N-fertilizer regime. African Journal of Biotechnology. 8(21): 5855–5866.
Misson J., M.C., Thibaud, N., Bechtold, K., Raghothama and L., Nussaume. 2004. Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Molecular Biology. 55: 727–741.
Molla, A.H., Z.H., Shamsuddin, M.S., Halimi, M., Morziah and A.B., Putech. 2001. Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in Laboratory systems. Soil Biol and Biochemistry. 33: 457-463.
Porra, R.J., W.A., Thompson and P.E., Kriedemann. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta. 975: 384-94.
Sabaghpour, H., A.A., Mahmoudi, A., Saeed, M., Kamel and R.S., Malthora. 2006. Study on chickpea drought tolerance lines under dryland condition of Iran. Indian Journal of Crop Science. 1: 70-73.
Sheng, X.F. and L.Y., He. 2006. Solubilization of potassium-bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Journal of Microbiology. 52: 66-72.
Sindhu, S.S., S.K., Gupta. and K.R., Dadarwal. 1999. Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of plant growth in green gram (Vigna radiata). Biological Fertility of Soils. 29: 62-68.
Sindhu, S.S., S., Suneja, A.K., Goel, N., Parmar and K.R., Dadarwal. 2002. Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. cicer strain under sterile and “wilt sick” soil conditions. Applied Soil Ecology. 19: 57-64.
Stancheva, I. and N., Dinev. 2003. Effect of inoculation of maize and species of tribe Triticeae with Azospirillum brasilense. Journal of Plant Physiology. 4: 550-552.
Starr, M.P., H., Stolp, H.G., Truper, A., Balows and H.G., Schlegel. 1995. The Prokaryotes, Springer-Verlage.
Sturz, A.V. and B.R., Christie. 2003. Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil and Tillage Research. 72: 107-123.
Tilak, K.V.B.R., N., Ranganayaki and C., Manoharachari. 2006. Synergistic effects of plant growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by Pigeonpea (Cajanus cajan). European Journal of Soil Science. 57: 67-71.
Wani, P.A., M.S., Khan and A., Zaidi. 2007. Synergistic effect of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on performance of field-grown chickpea. Journal of Plant Nutrition and Soil Science. 170: 283-287.
Zafar, M., M.K., Abbasi, M.A., Khan, A., Khaliq, T., Sultan and M., Aslam. 2012. Effect of plant growth promoting rhizobacteria on growth, nodulation and nutrient accumulation of lentil under controlled conditions. Pedosphere. 22: 848-859.
Zaidi, A. and S., Mohammad. 2006. Co-inoculation effects of phosphate solubilizing micro-organisms and Glomus fasciculatum on green gram-bradyrhizobium symbiosis. Agriculture Science. 30: 223-230.
Zaidi, A., M.S., Khan and M., Amil. 2003. Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Europian Journal of Agronomy. 19: 15-21.
Zhang, Z.L. 1990. Guide to plant physiology experiments. Beijing: Higher Education Press.
Zahir, A.Z., M., Arshad and W.F., Frankenberger (Jr.). 2004. Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Advances in Agronomy. 81: 97-68.
_||_