Effect of the oak decline on the secondary compositions in oak leaves Case study: Zagros forest- Lorestan
Subject Areas : Journal of Plant Ecophysiologyziyaoddin Badehian 1 , Shahram Karami 2 , Marzieh Rashidi 3 , Mohsen Rajabi 4
1 - استادیار گروه جنگلداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم آباد، ایران
2 - دانشجوی دکتری اکولوژی دانشکده علوم کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم آباد، ایران
3 - کارشناس منابع طبیعی،واحد لرستان، دانشگاه آزاد اسلامی، خرم آباد، ایران
4 - کارشناس مهندسی منابع طبیعی، دانشگاه پیام نور لرستان، خرم آباد، ایران
Keywords: tannin, Antioxidant, Oak decline, Lorestan Forests, soluble & insoluble suger,
Abstract :
In recent years, Querqus trees especially those which are located in the Lorestan province, in the Central Zagros forests, have faced to the Oak decline phenomenon. Different natural and unnatural factors can make this phenomenon to occur. Quercus brantii, the dominant species of the Lorestan forests, is suffered from this phenomenon and it has been degraded in wide range. Quercus brantii contain different type of secondary compositions. Secondary compositions in the leaves react as a defensive mechanism against stress maker conditions. In present study, to investigate the effect of oak decline on the secondary compositions such as total tannin, insoluble suger, principal soluble suger, condensed tannin and antioxidant of the leaves of Quercus branti, some sample of the leaves from affected trees in the Lorestan forests were gathered. After different tests on the leaves of Quercus brantii, the analysis of the acquired data was conducted using the factorial experiment and independent t-test. The rate of total tannin, insoluble suger, principal soluble suger and condensed tannin in the affected tress in the regions of Miankooh, Maleshaban and Abolvafa had a significant difference with the healthy trees but the rate of antioxidant did not show a significant difference. Moreover, the rate of condensed tannin in the regions of Miankooh and Abolvafa were significantly greater than the other areas. Stressful conditions such as oak decline, cause changes in the amount of secondary compounds in leaves. Studying these changes can help diagnosing and controlling the prevalence of stressful conditions.
صالحی اسکندری، ب. و م. کاویانی 1393. مقایسه برخی از تغییرات فیزیولوژیکی و بیوشیمیایی سرشاخههای گالدار و سالم درختان (Salix babylonica). مجله پژوهشهای گیاهی، 27 (5): (ویژهنامه): 12-1.
کفاش، ش. بخشیخانیکی، غ. و ب. یوسفی. 1387، بررسی مورفولوژیکی برگ گونه بلوط دارمازو (Quercus infectoria Oliv). در جنگلهای کردستان. مجله پژوهش و سازندگی در منابعطبیعی،21 (2): 144-135.
کوهسار، ج. غلامعلی، ا. و م. کرامت لو. 1392. تعیین و مقایسه میزان ترکیبات فنولی برگ و میوه بلوط شمال و غرب کشور. اولین همایش منطقهای گیاهان دارویی شمال کشور، 3 ص.
رنجبر، م. لاری یزدی. ح. و ش. برومند. 1390. تأثیر سالیسیلیک اسید بر رنگیزههای فتوسنتزی، محتوای قند و آنزیمهای آنتیاکسیدانی در گیاه کلزا تحت تنش سرب. زیستشناسی گیاهی، 3 (9): 48-39.
نبی شریعتی، ا. شمس اردکانی. م. میثاقی، ع. جمشیدی، ا. و غ. جاهد خانیکی. 1390. بررسی کمی و کیفی ترکیبات فنلی و فعالیت آنتیاکسیدانی گیاه علف هیضه. مجله افق دانش، 17(4): 57-70.
نظری، م. ذوالفقاری. ر. و پ. فیاض. 1392. میزان تغییرات ترکیبات ثانویۀ تحت تنش خشکی نهالهای بلوط برودار، دارمازو و ویول. نشریه جنگل و فرآوردههای چوب، مجله منابع طبیعی ایران، 66 (1): 14-1.
Abdul Jaleel, C., K. Riadh, R. Gopi, P. Manivannan, J. Ines, H.J. Al-Juburi, Z. Chang-Xing, S. Hong-Bo, and R. Panneerselvam, 2009. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constrains. Act Physio Plant, 31: 427-436.
Anuraga, M., P. Duarsa, M. Hill, and J. Lovett, 1993. Soil moisture and temperature affect condensed tannin concentrations and growth in Lotus corniculatus and Lotus pedunculatus Australian Journal of Agricultural Research, 44: 1667-1681.
Fort, C., M. Fauveau, L. Muller, F. label, P. Granier and A. E. Dreyer. 1997. Stomatal conductance, growth and root signaling in young oak seedlings subjected to partial soil drying. Tree Physiol, 17: 281-289.
Gunes, A., A. Inal, E. G. Bagci and D. J. Pilbeam. 2007. Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic- B toxic soil. Plant Soil 290: 103-114.
Haslam, E. 1996. Natural polyphenols (vegetable tannins) as drug and medicines: possible modes of action. J Nat Prod, 59(2): 205-215.
Inze, D. and M. V. Montagu. 2000. Oxidative stress in plants, T.J. Int. Ltd, Padstow, Cornawall. Great Britain, 321 p.
Kabrick, J., M. Dey, D. C. Jensen, R. and G. M. Wallendorf. 2008. The role of environmental factors in oak decline and mortality in the Ozark Highlands. Forest Ecol Manage. 255 (5-6): 1409-1417.
Kawamitsu, Y., T. Driscoll and J. S. Boyer. 2000. Photosynthesis during desiccation in an intertidal alga and a land plant. Plant Cel Physiol. 41: 344-353.
Manchanda, G. and Garg, N. 2008. Salinity and its effects on the functional biology of legumes. Acta Physiol Plant. 30:595-618.
Molassiotis, A., T. Sotiropoulos, G. Tanou, G. Diamantidis and I. Therios. 2006. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environ. Exp. Bot. 56: 54–62.
Pallavi, Sh. and Sh. D. Rama. 2005. Lead toxicity in plant. Brazilian J Plant Physiol 17: 1-6.
Poulos, H.M. 2007. Drought response of two Mexican oak species, Quercus laseyi and Q. sideroxila (Fagaceae), in relation to eleventional position. Am J Bot, 94(5): 809-818
Prado, F. E., C. Boero, M. Gallardo and J. A. Gonzalez. 2000. Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa (Wild.) seeds. Bot. Bull. Acad. Sin. 41: 27–34.
Singh, A., M.L. Saini, R.K. Behl. 2004. Seed germination and seedling growth of citrus (Cytrus species) root stocks under different salinity regimes. Indian J Agri Sci. 74: 246-248.
Timasheff, S. N. and T. Arakawa. 1989. Stability of protein structure by solvents. In: Creighton, T. E. (Ed.), Protein Structure: A Practical Approach. Oxford University Press, Oxford, UK. 465 p.
Yazici, I., F. Turkan, A. Sekmen, H. and T. Demiral, 2007. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61(1): 49-57.
_||_