Effect of Biofertilizers and Irrigation Management on phisiological Indices of Fenugreek (Trigonella foenum- graecum L.)
Subject Areas : Journal of Plant Ecophysiologymoslem jaberi 1 * , reza baradaran 2 , seyyed Gholam Reza Mousavi 3 , mahsa aghhavani shajari 4
1 - Expert of the office of coordination Economic and International Affairs, South Khorasan
2 - Governor Office Assistance of department of Agriculture, Azad University, Birjand
3 - Governor Office Assistance of department of Agriculture, Azad University, Birjand
4 - PhD of Agroecology, Ferdowsi university, Mashhad
Keywords: Fenugreek, Proline, Physiological characteristics, Biofertilizers, qualitative indices,
Abstract :
In order to study the effects of biological nutrition and irrigation managements on qualitative indices of fenugreek, an experiment was carried out in split plot based on a Randomized Complete Block Design with three replications and 15 treatments at Research Station, Faculty of Agriculture, Azad University, Birjand, Iran, during growing season of 2010-2011. Experimental treatments included irrigation interval (in three levels including irrigation every 6, 9 and 12 days) and biofertilizer (in five levels including nitroxin, biosphere, and micorhyza fungi of G. mosseae, G. intraradices and control treatment or none fertilizer). Results of statistical analysis showed that irrigation treatments had a significant effect on physiological indices like carbohydrate, chlorophyll a, ash, Na, K and proline. The effect of biofertilizer was significant on carbohydrate, chlorophyll a, and on ash. Results showed that proline, carbohydrate, Na, chlorophyll b and ash improved by increasing irrigation interval to every 12 days but K and chlorophyll a decreased. The highest content of carbohydrate, chlorophyll and ashwere observed in G. mosseae, biosphere and G. intraradices, respectively. Overall, results showed that application of biofertilizers had positive effects on qualitative indices of fenugreek and created type of plant adaptation to drought stress.
ابوالحسنی زراعتکار، م.، ا. لکزیان، غ. حق نیا، و م. سرچشمه پور. 1385. تلقیح گیاه یونجه با جدایه های بومی سینوریزوبیوم ملیلوتی مقاوم به شوری و خشکی در شرایط تنش آبی در گلخانه. پژوهش های زراعی ایران، 4(2): 195-183.
زرگری، ع. 1376. گیاهان دارویی. جلد چهارم. انتشارات دانشگاه تهران، تهران.
علیزاده، ا . 1381. خشکسالی و ضرورت مدیریت درمصرف آب. فصل نامه خشکی و خشکسالی کشاورزی، 3 : 7-3.
قربانى، م. و م. نیاکان. 1384. بررسى اثر تنش خشکى بر روى میزان قندهاى محلول، پروتئین، پرولین، ترکیبات فنلى و فعالیت آنزیم نیترات ردوکتاز گیاه سویا رقم گرگان. نشریه علوم دانشگاه تربیت معلم، 5: 549-537.
کریمی زارچی، م. و م. کلباسی. 1378 . بررسی تأثیر هوادهی و مخلوط کردن بر فرآیند تولید کمپوست و کیفیت کمپوست تولیدی از زباله های شهری. صفحه 7. ششمین کنگره علوم خاک ایران، دانشگاه فردوسی مشهد.
Allievi, L., A. Marchesisni, C. Salardi, V. Piano, and A. Ferrari. 1993. Plant quality and soil residual fertility six years after a compost treatment. Bioresource Technology, 43: 85-89.
Arun, K.S. 2002. A Handbook of Organic Farming Publication of Agrobios, India.
Bajji, M., S. Lutts, and J.M. Kinet. 2001. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf) arid condition. Plant Science, 160: 669-681.
Barker, D.J., C.Y. Sullivan, and L.E. Moser. 1993. Water deficit effect on osmotic potential, cell wall elasticity and proline in five forage grasses. Agronomy Journal, 85: 270-275.
Bates, L.S., R.P. Waldem, and I.D. Tear. 1973. Rapid determination of free prolin for water stress studies. Plant Soil, 39:205-207.
Bohnert, H.J., D.E. Nelson, and R.G. Jensen. 1999. Adaptation to environmental stresses. The Plant Cell, 7: 1099-1111.
Boyer, J.S. 1982. Plant productivity and environment Science. 218: 443-448.
Bouteau, F., H. Dauphin, E. Maarouf, and J.P. Rona. 2001. Effect of desiccation on potassium and anion currents from young root hairs: Implication tip growth. Physiology of Plant, 113: 79-84.
Ebhin Masto, R., P.K. Chhonkar, D. Singh, and A.K. Patra. 2006. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisoil. Soil biology and Biochemistry, 38: 1577-1582.
Fatima, S., A.H.A., Farooqi, S.R., Ansari, and S. Sharma. 1999. Effect of water stress on growth and essential oil metabolism in Cymbopogon martini (plamerosa) cultivars. Journal of Essential Oil Research, 11: 491- 496.
Fatma, A.G., A.M. Lobna, and N.M. Osman. 2008. Effect of compost and biofertilizers on growth, yield and essential Oil of sweet marjoram (Majorana hortensis) Plant. International Journal of Agriculture and Biology, 10(4): 381–387.
Ghost, B.C., and R. Bhat. 1998. Environmental hazards of nitrogen loading in wetland rice fields. Environmental Pollution, 102: 123–126.
Gusegnova, I.M., S.y. Suleymanov, and J.A. Aliyev. 2006. Protein composition and native state of pigments of thylakoid membrane of Wheat genotypes differently tolerant to water stress. Biochemistry, 71: 223-228.
Handson, A.D., and W.D. Hitz. 1982. Metabolism response of mesophytes to plant water deficit. Annual Review Plant Physiology, 33: 163-203.
Hisao, T. 1973. Plant responses to water stress. Annual Review of Plant Physiology, 24: 519-570.
Jones, M.M., C.B. Osmond, and N.C. Turner. 1980. Accumulation of solutes in leaves of sorghum and sunflower in response to water stress. Australian Journal of Plant Physiology, 7: 193-205.
Kuznetsov, Vi.V., and N.L. Shevyakova. 1999. Prolin under stress: Biological role metabolism and regulation. Russian Journal of Plant Physiology, 46(2): 274-287.
Lazcano-ferrat, I., and Lovatt, C.J. 1999. Relationship between reative water content, nitrogen pools and growth of Phaseolus vulgaris L. and p. acutifolius A. Gray during water deficit. Crop Sciense, 39: 467-475.
Martin, M., F. Micell, J.A. Morgan, M. Scalet, and G. Zebi. 1993. Synthesisofosmotically active substances in winter Wheat leaves as related to drought resistance of different genotypes. Journal of Agronomy and Crop Science, 171: 176-184.
Murty, M.G., and J.K. Ladha. 1988. Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant and Soil, 108: 281–285.
Pouryousef, M., M.R. Chaichi, D. Mazaheri, M. Fakhretabatabaeii, and A. Jafari. 2007. Effect of different soil fertilizing systems on seed and mucilage yield and seed P content of isabgol (Plantago ovata forsk). Asian Journal of Plant Sciences, 6(7): 1088-1099.
Premachandre, G.S., H. Saneoka, and K. Fujita. 1991. Osmotic adjustment and stomata response to water deficits in maize. Journal of Experimental Botany, 43: 1451-1456.
Sairam, R.K., P.S. Deshmukh, D.C. Saxna, 1998. Role of antioxidant systemes in Wheat genotype tolerance to water stress. Biologia Plantrum, 41(3): 387-394.
Schlegel, H.G. 1956. Die Verwertung organischer sauren durch chlorella in lincht. Planta, 47: 510-515.
Synerri, C., C. Pizino, and F. Navariizzo, 1993. Chemical changes and O2 production in thylakoid membrane under water stress. Plant Physiology, 87: 211- 216.
Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizer. Plant and Soil, 255: 571–586.
Viets, F.G.J.R. 1972. Fertilizers and the efficient use water. Adr. Agron, 14:233-264.
Wang, S., Ch. Wan, Ya. Wang, H. Chen, Z. Zhou, H. Fu, and R.E. Sosebee. 2004. The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alexa Desert, China. Journal of Arid Environments, 56: 525-539.
Zhang, J., H.T. Nguyen, A. Blum. 1999. Genetic analysis of osmotic adjustment in crop plants. Journal of Experimental Botany, 50: 291-302.
_||_