

Vol. 3, Issue 1, Spring 2025

 Variational Graph Autoencoder for Unsupervised Community Detection in Attributed

Social Networks
Omid Rashnodi, Maryam Rastegarpour, Azadeh Zamanifar, Parham Moradi

 Using Machine Learning to Discover Traffic Patterns in Software Defined Networks
Abdulrazzaq Mosa Al-Mhanna, Pouya Khosravian Dehkordi

 Review of Machine Learning Algorithm in Medical Health
Zahra Ghorbani, Sahar Behrouzi-Moghaddam, Shahram Zandiyan, Babak Nouri-
Moghaddam, Nasser Mikaeilvand, Sajjad Jahanbakhsh, Ailin Khosravani, Fatemeh
Tahmasebizadeh, Abbas Mirzaei

 Mathematical Modeling For Relocation Of Terminal Facilities In Location Problems
Mehdi Fazli, Somayyeh Faraji

 Fuzzy Logic-Based Vector Control Method for Induction Motors
Gholam Reza Aboutalebi

 Learning Rate Optimization of U-Net Architecture Using Grasshopper Optimization
Algorithm to Enhance Accuracy in CT Image Segmentation of COVID-19 Patients
Alireza Mehravin, Mostafa Zaare, Reza Mortazavi

1

Journal of Optimization of Soft Computing (JOSC)

Vol. 3, Issue 1, pp: (1-23), Spring-2025

Journal homepage: https://sanad.iau.ir/journal/josc

Paper Type (Research paper)

Variational Graph Autoencoder for Unsupervised Community

Detection in Attributed Social Networks

Omid Rashnodi 1, Maryam Rastegarpour*2, Azadeh Zamanifar1,

 Parham Moradi3

1. Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2. Department of Computer, College of Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran.

3. School of engineering, RMIT University Melbourne, Australia

Article Info Abstract

Article History:
Received: 2025/02/21

Revised: 2025/03/08

Accepted: 2025/04/12

DOI:

This paper introduces a novel approach named VGAEE (Variational Graph

AutoEncoder Embedding), an innovative deep-learning framework for

detecting communities in attributed social networks. By synergistically

integrating node content with network topology, VGAEE aims to enhance the

quality of community identification. Initially, we computed the modularity

and Markov matrices of the input graph. These matrices were then

concatenated and used as the input for the VGAEE to create a meaningful

representation of the graph. In the decoder component of VGAEE, two layers

of Graph Convolutional Networks (GCN) are employed. Subsequently, a K-

Nearest Neighbors (KNN) algorithm was used for clustering communities

based on the embeddings generated previously. We conducted experiments

on three benchmark datasets—Cora, Citeseer, and PubMed—and compared

the results with various baseline and state-of-the-art methods using Accuracy

(ACC) and Normalized Mutual Information (NMI) as evaluation metrics. The

findings demonstrate that VGAEE significantly improves community

detection performance, achieving an accuracy of 84.5% on Cora , 80.5% on

PubMed, and 75.6% on Citeseer. In terms of NMI, VGAEE reached 70.46%

on Cora, 55.60% on PubMed, and 57.06% on Citeseer, consistently

outperforming existing methods. These results confirm the superiority of

VGAEE in accurately capturing community structures within large, complex

networks, making it a highly effective tool for unsupervised community

detection.

Keywords:
Community Detection,

Attributed Social Networks,

Variational Graph

Autoencoder, Graph

Convolutional Networks, Deep

Learning, Node Embeddings,

Network Topology

Omid Rashnodi
omid.rashnodi@iau.ac.ir

* Maryam Rastegarpour
m.rastgarpour@gmail.com

Azadeh Zamanifar
azamanifar@srbiau.ac.ir

Parham Moradi
p.moradi@uok.ac.ir

mailto:omid.rashnodi@iau.ac.ir
mailto:m.rastgarpour@gmail.com
mailto:azamanifar@srbiau.ac.ir
mailto:p.moradi@uok.ac.ir

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

2

1.introduction

The study of community structures within

networks has advanced significantly since the early

days of sociological research, evolving into a

critical field that employs complex mathematical

tools for large-scale data analysis. Since the

groundbreaking work of Girvan and Newman in

2002, identifying and understanding these

structures has become essential for analyzing the

composition and function of various networks,

with applications spanning diverse fields such as

epidemiology and marketing.

Despite advancements in topological, content-

based, and graph-theoretical approaches to

community detection, existing methods still face

several challenges—especially in the quality of

vector representations for network nodes. Many

current techniques fail to fully capture both the

structural and contextual information of nodes. As

a result, they often struggle with tasks like

clustering and classification and are unable to keep

up with the increasing demands of growing and

more complex networks.

This paper explores the limitations of traditional

community detection methods, particularly when

applied to large-scale or high-dimensional

networks constrained by computational power and

data volume. These challenges significantly hinder

the effectiveness of conventional approaches in

analyzing modern, complex relational data. To

address these issues, this study leverages graph

neural networks (GNNs), a specialized branch of

deep learning tailored for graph data. By reducing

network dimensions and enhancing node

representations, this approach accelerates the

community detection process. Additionally, this

research integrates the modularity matrix with the

Markov matrix to improve detection accuracy,

making the proposed methods more efficient and

suitable for complex network structures. The

contributions and innovations of this study are

summarized as follows:

 Integration of Node Content and

Network Topology: The VGAEE

(Variational Graph AutoEncoder

Embedding) framework uniquely

combines node content with network

topology to enhance community detection

in attributed social networks. This

integration provides a more

comprehensive understanding of both

network structure and content.

 Use of Modularity and Markov

Matrices: The approach introduces an

innovative step by computing modularity

and Markov matrices from the input graph.

These matrices are then concatenated and

used as inputs for VGAEE, enabling a

more nuanced representation of the graph

structure.

 Graph Convolutional Networks in the

Decoder: The application of two layers of

Graph Convolutional Networks (GCN)

within the VGAEE decoder is a novel

feature. This technique leverages GCNs'

capabilities to learn and generate high-

quality embeddings that accurately reflect

the true community structure.

 Community Clustering via KNN: After

generating embeddings, VGAEE utilizes

the K-Nearest Neighbors (KNN) algorithm

for clustering. This innovative step

effectively combines a traditional machine

learning algorithm with a deep learning

framework to improve community

identification.

 Benchmark Dataset Experiments: The

paper conducts extensive experiments

using three widely recognized benchmark

datasets—Cora, Citeseer, and PubMed.

These rigorous tests validate the model's

effectiveness and provide a strong basis for

comparison with baseline and state-of-the-

art methods.

 Superior Performance Metrics: The

VGAEE framework outperforms existing

algorithms in both accuracy and

Normalized Mutual Information (NMI),

demonstrating its superior ability to

identify and differentiate community

structures in complex networks.

Community detection is widely recognized as an

NP-hard problem that presents a range of

computational challenges. This paper addresses

these issues by focusing on both computational

efficiency and detection accuracy in attributed

social networks. By utilizing GNNs, the study

introduces innovative embedding techniques and

improved graph representation learning strategies,

ultimately providing a more effective approach to

community detection.

We structure the remainder of this paper as follows:

Section 2 surveys the existing literature on graph

convolutional networks and dual embedding

techniques, outlining fundamental advances and

identifying the gaps that our study aims to address.

Section 3 introduces the necessary concepts and

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

3

notations, providing the foundation for

understanding the methodologies discussed later.

Section 4 presents a detailed description of the

proposed algorithm, VGAEE, along with its

pseudocode. Section 5 offers a comprehensive

overview of the datasets used for testing, explains

the evaluation metrics employed to assess

performance, and describes the chosen parameters

and experimental setup. Finally, Section 6 presents

the conclusion and discusses directions for future

work.

2. Literature review

With recent advances in information technology

and the digital world, complex network theory has

found applications in various fields, including

social networks, biological networks, and internet

networks. One of the key challenges in complex

network research is community detection, which

aims to identify the structural properties of

networks. Communities in a network are formed by

groups of nodes that have stronger internal

connections and fewer connections with external

nodes. Early community detection methods

primarily relied on the topological characteristics

of networks, and numerous approaches have been

proposed based on different criteria for similarity

and proximity among groups. Before the

development of deep learning techniques,

community detection methods were broadly

categorized into two main groups: Hierarchical

methods and Partitioning methods. Hierarchical

methods begin with either a partition where each

node is considered an independent cluster or a

partition where all nodes belong to a single

community. Clusters are then iteratively merged or

divided based on a quality measurement criterion,

forming a hierarchical structure. While hierarchical

methods do not require prior knowledge of the

number of communities, they do depend on a

specific criterion to determine meaningful

partitions.

On the contrary, partitioning methods identify

clusters through iterative member allocation. These

methods assess the quality of partitions by

optimizing one or more objective functions. Some

commonly used partitioning techniques include

finding the largest number of cliques in a graph [1],

modularity maximization [2], matrix

decomposition [3], seed expansion [4], linear

sparse coding [5], sparse linear coding [5], and

evolutionary algorithms [1]. Both hierarchical and

partitioning methods involve high computational

costs, making them inefficient for large-scale

networks. In other words, these approaches

struggle to find optimal solutions within a

reasonable timeframe. To address this issue, more

adaptive local methods have been introduced to

detect separate and overlapping communities more

efficiently [6]. One such example is label

propagation-based methods, which use the local

expansion of node labels to identify communities

in linear time [7].

Deep learning (DL) techniques are widely applied

in various fields, including computer and social

sciences, economics, agriculture, healthcare, and

medicine [8]. Network representation learning

(NRL) converts complex network structure data

into a low-dimensional, manageable space, making

it useful across these diverse applications. This

approach includes learning network

representations [9], network embedding [10], and

graph embedding [11], all designed to preserve the

network’s typological structure, vertex content,

and auxiliary information.

These advanced learning methods have

transformed the way complex classification,

clustering, and prediction models are constructed

through effective graph data representation. They

simplify the execution of analytical tasks that

would traditionally require more complex models.

Network Representation Learning (NRL)

techniques focus on reducing the dimensionality of

network vertices representations while preserving

essential topological and content features of the

network [9]. These representations are then utilized

as vector inputs for machine learning tasks such as

node classification and link prediction, fostering

the creation of more refined and effective NRL

strategies for complex networks [10]. Methods for

graph representation learning are generally divided

into three main categories: probabilistic models,

deep learning-based algorithms, and matrix

decomposition algorithms. Each category will be

further discussed to highlight their unique

approaches and applications.

Probabilistic Models: Techniques such as LINE

[12] and Node2vec [13] are designed to extract

varied graph patterns to enhance embedding

learning. Node2vec efficiently maps nodes into a

vector space, which significantly boosts the

performance of link prediction and node

classification tasks. LINE is notable for its large-

scale application, utilizing edge sampling strategies

to address the typical challenges associated with

stochastic gradient descent. This adaptation

improves the graph embedding process while

maintaining high efficiency.

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

4

Deep Learning-Based Algorithms: DeepWalk

[14] is a prime example of integrating deep

learning with graph theory. It excels at encoding

the complete structural information of graphs by

leveraging the local structural information of

vertices and incorporating the Skip-Gram model

within the framework of random walks. This

approach has been particularly successful in social

networks for tasks like multilabel classification.

Deep learning models capture the nonlinear

dynamics of complex, extensive networks by

analyzing various relational data, including nodes,

neighbors, edges, subgraphs, and community

features. These models are particularly effective in

handling sparse networks and excel in

unsupervised learning contexts. Algorithms like

DNGR, SNDE, and ANRL [15] use deep

autoencoder models for representing high-

dimensional data. Conversely, end-to-end

network-based methods like SNE [16] and

DeepGL [17] blend structural and attribute data to

enhance graph representation learning.

Additionally, MGAE [18] utilizes a single-layer

autoencoder, simplifying clustering tasks, while

HNE [19] merges deep autoencoder neural

networks with convolutional networks to process

adjacent vectors and images.

Matrix Decomposition Algorithms: This

category includes techniques like M-NMF [20] and

TADW [21], which are focused on matrix

decomposition to effectively learn node

representations. These methods are crucial for

untangling complex network structures, enabling

deeper insights into network dynamics and

interactions.

Together, these methods establish a solid

framework for managing and analyzing complex

networks across diverse domains, accommodating

a broad spectrum of applications from theoretical

research to practical, real-world problem-solving.

This comprehensive approach ensures that insights

derived from graph theory and network analysis are

not only theoretically sound but also applicable in

solving actual challenges in fields such as social

networking, bioinformatics, and

telecommunications.

Wang et al. [22] effectively utilized a graph

autoencoder to achieve deep representations, which

were then applied in a spectral clustering algorithm

to enhance graph clustering. In a similar vein, He

et al. [23] developed a nonlinear restructuring

approach for modularity matrices using deep neural

networks, which they further adapted into a semi-

supervised community detection algorithm by

incorporating constraints on paired graph nodes.

Both approaches address significant challenges

associated with high computational demands and

the need for extensive parameter tuning, such as

determining the number of clusters, which often

remains undefined in large and heterogeneous

networks globally. More recently, advancements in

graph neural networks (GNNs), including graph

convolutional networks (GCNs), have been

introduced to address community detection issues

[24, 25]. GCNs amalgamate the information from

neighboring nodes through deep convolutional

layers in graphs, employing convolutional

operations similar to those used in convolutional

neural networks to extract and represent complex

community features based on network topology

and node characteristics [26].

Originally, Graph Convolutional Networks

(GCNs) were not designed with community

detection in mind, meaning they did not

specifically target community structures during

node embedding learning, nor did they impose

constraints on the structural relationships between

communities and nodes. Addressing this limitation,

Jin et al. [27] introduced a semi-supervised

community detection model named MRFasGCN.

This model integrates a GCN with the Markov

Random Fields (MRF) statistical model to enhance

community detection capabilities. The innovation

lies in extending the Markov Random Field into a

new convolutional layer within the GCN

framework, thereby allowing MRFasGCN to

effectively oversee and refine the overall outcomes

of the GCN's community detection efforts.

Sun et al. [28] developed a framework to enhance

network embedding for clustering nodes in

attributed graphs. This innovative framework

concurrently learns graph-based and cluster-

oriented representations. It consists of three key

components: a graph autoencoder module, a soft

modularity maximization module, and a self-

clustering module. The graph autoencoder module

is tasked with learning node embeddings that

incorporate both the topological structure and the

node properties.

Jin et al. [29] introduced an unsupervised model for

community detection using GCN embedding,

employing the GCN as the primary structure of the

encoder to reconcile two types of information:

topology and property. This model utilizes a dual

encoder setup to extract distinct embeddings from

these two data sources.

Luo et al. [30] presented a deep-learning model that

aims to simultaneously identify communities and

structural holes using a GCN-based encoder. This

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

5

approach leverages the GCN's ability to integrate

network topology and node properties for

community detection. However, the model faces

challenges as it (1) learns representations through

encoding topological features and node properties

without considering community-specific features,

resulting in embeddings that are not community-

centric, and (2) operates as a semi-supervised

rather than a fully unsupervised model.

Wang et al. [31, 32] proposed a novel approach

involving nonnegative matrix decomposition,

introducing a community membership matrix and a

community characteristic matrix. They also

developed several efficient updating rules that

ensure convergence. This method enhances

community detection by incorporating node

attributes, which also provide a semantic

interpretation of the communities.

Efforts have also been made to develop semi-

supervised methods for community detection by

integrating network representations with data

labels through graph-based regulation to identify

unlabeled nodes. Young et al. [33] utilized node

representations to predict network backgrounds

and applied node labels to facilitate various transfer

and inductive learning strategies. Recent

advancements include the introduction of graph

convolutional networks for network analysis, with

GCN-based methods enhancing both network

topology and attribute data analysis. Unlike most

semi-supervised approaches that predominantly

focus on network structure, these methods require

a substantial number of node labels to classify

unlabeled nodes. Sun et al. also introduced a graph

convolutional autoencoder framework for

clustering nodes, and several unsupervised

methods have been recently proposed to advance

this field.

In [34], a supervised model within the CNN

framework was introduced for typological defect

networks. This model incorporates two CNN layers

with max-pooling operators to represent the

network structure and a fully connected DNN layer

dedicated to community detection. The

convolutional layers are designed to capture the

local attributes of each node from multiple

perspectives. Testing on Topological Interference

Networks (TINs), with a configuration of 10%

labeled nodes and 90% unlabeled nodes, this model

achieved an impressive 80% accuracy in

community detection, highlighting that

incorporating high-order neighbor representation

can significantly enhance the accuracy of detecting

communities.

In [35], a model named the Linear Graph Neural

Network (LGNN) was proposed to enhance the

efficiency of the Stochastic Block Model (SBM) in

community detection while also reducing

computational costs. The LGNN effectively learns

the represented attributes of nodes in directed

networks by employing a combination of non-

backtracking operators and messaging rules,

streamlining the process and optimizing

performance.

In [36], the CommDGI model was introduced,

which optimizes graph representation and

clustering concurrently through mutual

information on nodes and communities while

aiming to maximize graph modularity. This

approach utilizes k-means clustering to

strategically align nodes with cluster centers,

enhancing the clarity and effectiveness of

community detection.

Additionally, while Spectral GCNs adeptly reveal

all hidden attributes of a node's neighborhood, they

can lead to over-smoothing, which may obscure

distinct community structures. To counter this

effect, graph convolutional ladder-shaped

networks have been developed as a novel GCN

architecture. Inspired by the U-Net model in the

CNN domain, this unsupervised community

detection approach [37] aims to mitigate the over-

smoothing issue, ensuring more distinct and

actionable community detection outcomes.

In scenarios where various types of links are treated

as simple edges, GCNs typically represent each

link separately and then aggregate them, which can

lead to redundancy in representation. To address

this, IPGDN [38] introduces a methodology that

segments neighborhoods into different sections and

autonomously identifies independent hidden

attributes of a graph. This approach simplifies the

process of community detection. The IPGDN

model is enhanced by the use of the Hilbert–

Schmidt independence criterion in neighborhood

routing, facilitating more precise and effective

community detection. Moreover, adaptive graph

convolution has been developed to identify

communities within attributed graphs. This

technique relies on both structural data and

representational features, categorizing neighboring

nodes and nodes with similar attributes into the

same community cluster. In this process, two graph

signals are combined, necessitating the filtering of

high-frequency noise, which is achieved through

the design of a low-pass graph filter with a specific

frequency response function.

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

6

In [39], a sophisticated method using Cayley

polynomials was introduced to achieve high-order

approximations within the spectral convolutional

framework of graph neural networks. Although the

exploration of GCN filters is relatively limited,

CayleyNets are distinguished by their use of low-

pass filters that effectively utilize extensive

community data for precise community

identification.

In [40], challenges associated with graph

convolutional neural networks in processing

complex relational graphs, such as excessive

smoothing during node classification, are

addressed. The newly developed SM-GCN model

strives to enhance node categorization accuracy by

reducing dependency on individual node features

and incorporating scattering embeddings. This

innovation is specifically designed to mitigate the

over-smoothing effect, ensuring more distinct and

accurate node classifications in complex network

structures.

In [41], a new model known as the Graph

Convolutional Fusion Model (GCFM) was

introduced for enhancing community detection in

multiplex networks, which are composed of

multiple layers, each representing a different type

of relationship among the same set of nodes. The

GCFM utilizes a graph convolutional autoencoder

for each layer to capture and encode the structural

features specific to each layer while considering

the connections between neighboring nodes. This

approach allows for a more nuanced and accurate

detection of communities across the complex

interlayer dynamics of multiplex networks.

In [42], the Temporal Attributed Network

Matrix Factorization (TANMF) algorithm was

developed to detect dynamic modules within

cancer temporal-attributed networks, incorporating

both genomic data and temporal network changes.

The experimental results showed that TANMF not

only surpasses existing methods in accuracy but

also enriches identified modules with known

biological pathways and demonstrates correlations

with patient survival outcomes, providing valuable

insights into cancer progression.

In [43], the Joint Learning Dynamic Edge

Community (jLDEC) algorithm was proposed for

identifying dynamic communities within temporal

networks. This algorithm integrates graph

representation learning with community detection

and the dynamics of network edges into a unified

framework, significantly enhancing the precision

of community detection. The jLDEC algorithm has

been shown to perform better than traditional

methods, particularly in accurately capturing the

changing dynamics of community structures within

temporal networks.

In [44], the Network Embedding to Nonnegative

Matrix Factorization (NE2NMF) algorithm

addresses the challenge of detecting dynamic

communities by combining network embedding

with nonnegative matrix factorization. It

incorporates a third-order smoothness strategy that

accounts for previous, current, and subsequent

network snapshots, thereby providing a more

comprehensive characterization of community

dynamics. Experimental validations confirm that

NE2NMF not only improves accuracy but also

enhances the robustness of community detection

compared to conventional approaches, making it

particularly effective in dynamic network

environments.

In [45], the Joint Learning of Multidimensional

Clustering (jLMDC) algorithm was presented for

dynamic community detection in temporal

networks. This approach integrates feature

extraction and clustering into a single framework,

significantly enhancing both the accuracy and

efficiency of detecting dynamic communities.

Compared to traditional methods, jLMDC shows

marked improvements in computational speed and

accuracy, making it highly effective for managing

large-scale networks and their complex community

dynamics.

In [46], the Deep Autoencoder-like Nonnegative

Matrix Factorization for Multi-View Learning

(DANMF-MRL) was introduced, employing a

deep encoding process to create a representation

matrix. This matrix is subsequently decoded to

reconstruct the original data. Utilizing the DANMF

framework, the method addresses the challenges of

maintaining consistency and complementarity in

multi-view data, greatly enriching the depth and

comprehensiveness of data representations.

In [47], a Nonnegative Matrix Factorization-based

Multi-View Learning (MRL) framework was

proposed, which considers two critical

components: an exclusivity term to leverage

diverse intra-view information and a consistency

term to ensure unified representations across

multiple views. Additionally, a local manifold

component is included to preserve the local

geometric structure of the data. An alternating

optimization algorithm based on multiplicative

updates was introduced to solve this problem, with

proven convergence.

Review studies have shown that graph embedding

methods can substantially improve efficiency and

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

7

reduce the time needed for community detection in

social networks. Variational Graph AutoEncoder

(VGE), a deep learning-based embedding

technique, is utilized for network representation

learning. However, a significant challenge with

GCNs is their lack of inherent community

orientation, which can result in node

representations that may not be sufficiently precise

for effective community detection. To address this,

the k-core algorithm is used first to filter the graph

and eliminate less significant nodes, thereby

reducing the graph's size and enhancing the

distinctiveness of its communities. Subsequently,

the modularity matrix and the Markov matrix,

which represent the graph's structure and content

respectively, are concatenated and used as input for

the VGE. The VGE encoder processes this input

through two layers of the graph convolution

network, producing a reduced-dimensional

representation for each node. This representation is

then normalized and utilized as the input for the k-

nearest neighbors clustering algorithm to identify

communities.

3. Preliminaries and Notation

This section provides a concise introduction to the

foundational concepts, including essential

notations and the formal problem statement. These

preliminaries establish the groundwork necessary

for understanding the proposed approach.

3.1. Attributed graph

Suppose that 𝐺 = (𝑉, 𝐸, 𝐴, 𝑋) is an attributed

network where V is a set of vertices
{𝑣1, 𝑣2, … , 𝑣𝑛}, 𝐸 is a set of edges between nodes,

A is the adjacency matrix, and X is the attribute

matrix where an element 𝑋𝑖𝑝 represents the value

of the p-th attribute for the vertex 𝑣𝑖. In adjacency

matrix A, if there is an edge between the two

vertices of 𝑣𝑖 and 𝑣𝑗 then 𝑎𝑖𝑗 > 0. For weightless

networks, if there is an edge, 𝑎𝑖𝑗 =

1; otherwise, 𝑎𝑖𝑗 = 0. if the network is not direct,

𝑎𝑖𝑗 = 𝑎𝑗𝑖 also holds [50].

3.2. Community and community detection

Consider that we have the community set 𝐶 =
{𝐶1, 𝐶2, … , 𝐶𝑟}. Each community is a network

partition with regional structures and shared cluster

attributes. The node 𝑣𝑖 that is clustered in the

community 𝐶𝑖 It should meet the condition that the

internal degree of every node is greater than its

external degree. In this paper, community detection

is considered in the attributed graph. The graph has

G attributes and the number of r communities. This

paper aims to find the function 𝑓: 𝑣 → {1,2,3,… , 𝑟}
such that r is true for all 𝑓(𝑣𝑖) = 𝑟 nodes of the r

community. Function partitions should follow the

following principles: (1) Nodes of a group are

connected, while the nodes are not connected in

different groups. (2) Nodes in the same community

tend to have similar attribute values, while those

from different communities may vary relatively,

even if they are neighbors at the graph level. (3)

The function can adequately maintain the attributed

graph's node attributes and structural information.

Finally, we can find the groups separate from the

nodes and their inductive subnodes, i.e.,

communities.

3.3. Decomposition k-core:

Assume a graph G = (V, E) of |V | = n vertices and

|E| = e edges; a k-core is defined as follows: A

subgraph H = (C, E|C) induced by the set C ⊆ V is

a k-core or a core of order k iff ∀ v ∈ C: degree H

(v) ≥ k, and H is the maximum subgraph with this

property. Therefore, a k-core of G can be obtained

by recursively removing all the vertices of degrees

less than k until all vertices in the remaining graph

have at least degree k.

3.4. Modularity and normalization cut:

Assume that network G = (A, S) is undirected and

attributed to n nodes, where 𝐴 = [𝑎𝑖𝑗] ∈ 𝑅𝑛∗𝑛 is

the adjacency matrix. In this matrix 𝑎𝑖𝑗 = 1 if there

is an edge between nodes i and j; otherwise, 𝑎𝑖𝑗 =

0. Here, 𝛽𝑖 = ∑ 𝑎𝑖𝑗𝑗 is the degree of node i, and

𝑚 =
1

2
∑ 𝛽𝑖𝑖 is the total number of network edges.

𝑆 = [𝑠𝑖𝑗] ∈ 𝑅𝑛∗𝑛 is a similarity matrix in which 𝑠𝑖𝑗

is the cosine similarity value between the

corresponding content vectors of nodes i and j.

According to these explanations, the normalized

cut and modularity models are defined as follows:

3.4.1. Modularity Model:

The modularity function Q was first introduced by

Newman and Girvan in [51] and is widely

recognized as one of the most prominent quality

functions for community detection. Due to its

effectiveness, optimizing Q-modularity has

become a fundamental approach in community

detection. Equation (1) formally defines this

function for two communities:

∅ =
1

4𝑚
∑ (𝑎𝑖𝑗 −

𝛽𝑖𝛽𝑗

2𝑚
)𝑖𝑗 (𝜓𝑖𝜓𝑗) (1)

Where 𝜓𝑖 is equal to 1 (or -1) if node 𝑣𝑖 Belongs to

community 1 (or 2). Modularity can be easily

optimized using specific vectors and values by

defining a modularity matrix, as shown in equation

(2):

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

8

𝐵 = [𝑏𝑖𝑗] ∈ 𝑅𝑛∗𝑛, with entries 𝑏𝑖𝑗 = 𝑎𝑖𝑗 −
𝛽𝑖𝛽𝑗

2𝑚
 (2)

Therefore, the modularity ∅ can be rewritten as

equation (3):

∅ =
1

4𝑚
𝜓𝑇𝐵𝜓 (3)

Where 𝜓 = [𝜓𝑖] ∈ {−1,1}𝑛represents

membership in a community node. However,

maximizing modularity is an NP-hard problem. By

simplifying the problem and allowing variables 𝜓𝑖

to take any integer value, the problem can be easily

solved as equation (4):

𝑚𝑎𝑥 ∅ = 𝑚𝑎𝑥 𝑇𝑟(𝛹𝑇𝐵𝛹) (4)

Where 𝛹 = [𝜓𝑖𝑗] ∈ 𝑅𝑛∗𝑝 is the matrix that hints at

membership in the community, and Tr (0) is the

trace function. The solution is to obtain p of the

most significant specific vector of modularity

matrix B. In addition, the solution space allows Ψ

reconstruction of network topology from a

community structure viewpoint. Therefore, any

row of the Ψ matrix can be assumed to be a good

representation of the corresponding node in the

hidden space to detect the community.

3.4.2-Normalize cut model:

This model calculates the ratio of external edges to

internal edges, providing a measure of community

separation. To compute a normalized cut, the cut

between clusters A and B, denoted as Cut (A, B),

represents the total number of edges that connect

nodes in different clusters. The volume of cluster

AA, represented as Vol (A), is the sum of the

degrees of all nodes within cluster A [52]. These

values are determined using equations (5) and (6):

𝑐𝑢𝑡(𝐴, 𝐵) = ∑ 𝑤𝑖𝑗𝑖∈𝐴,𝑗∈𝐵 (5)

𝑉𝑜𝑙(𝐴) = ∑ 𝑘𝑖𝑖∈𝐴 (6)

Given equations (5) and (6), the objective

function of the normalized cut for two clusters, A

and B, will be equation (7) or equation (8) when

there are k clusters C1, C2 … Ck.

𝑁𝑐𝑢𝑡(𝐴, 𝐵) =
𝑐𝑢𝑡(𝐴,𝐵)

𝑣𝑜𝑙(𝐴)
+

𝑐𝑢𝑡(𝐴,𝐵)

𝑣𝑜𝑙(𝐵)
 (7)

𝑁𝑐𝑢𝑡(𝐶1, 𝐶2, … , 𝐶𝑘) = ∑
𝑙𝑖𝑛𝑘(𝐶𝑡,𝐶�̅�)

𝑣𝑜𝑙(𝐶𝑡)
𝑘
𝑡=1 (8)

Where 𝑙𝑖𝑛𝑘(𝐶𝑡, 𝐶�̅�) =
1

2
∑ 𝑆𝑖𝑗𝑖∈𝐶𝑡,𝑗∈𝐶𝑡̅̅ ̅ is the total

connection from nodes in Ct to all nodes in 𝐶�̅� (not

in𝐶𝑡) and 𝑣𝑜𝑙(𝐶𝑡) = ∑ 𝑑𝑖𝑖∈𝐶𝑡
 is the total internal

connection in 𝐶𝑡.

To achieve the minimum objective function, the

normalized cut is wrapped in an optimization

problem as per Equation (9), where L is the

Laplacian graph matrix of similarity and its

normalized form 𝐷−1𝐿 = 𝐷−1(𝐷 − 𝑆) = 𝐼 − 𝐷−1𝑆 is

the identity matrix (I). Equation (10) is known as

the Markov matrix:

𝑚𝑖𝑛 𝑇𝑟(∅𝑇𝐿∅)

∅ ∈ 𝑅𝑛∗𝑘

S.t L=D-S

D= 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, … , 𝑑𝑛) (9)

∅𝑖𝑗 = {

1

√𝑣𝑜𝑙(𝐶𝑗)

 if 𝑣𝑖 ∈ 𝐶𝑗

0 otherwise

M=𝐷−1𝑆 (10)

 In the case of this problem, the solution matrix ∅

of the specific vectors of k is the minimum nonzero

particular value of the normalized Laplacian

matrix 𝐷−1𝐿. In other words, k is the most

significant specific value M covers, representing

the solution in the hidden space. More importantly,

the solution matrix Φ provides a perfect

representation for obtaining the clustering.

Given the above, a higher modularity leads to a

better partition structure; conversely, a lower

normalized cut value enhances the two critical

principles of graph classification, namely

maximum integrity and minimum connection.

3.5. Graph embedding:

Let G= (V, E, X), where 𝑉 = {𝑣𝑖} 𝑖 = 1,2, . . , 𝑛 is

formed of a set of graph nodes and 𝑒𝑖𝑗 =< 𝑣𝑖, 𝑣𝑗 >

∈ 𝐸 represents a connection between the nodes.

The topological structure of graph G is illustrated

by adjacency matrix A, where 𝐴𝑖𝑗 = 1 if eij ∈ E

and otherwise 𝐴𝑖𝑗 = 0. 𝑋 ∈ 𝑅𝑛∗𝑑 is the node

attribute matrix, and d is the number of attributes.

In addition, 𝑥𝑖 ∈ 𝑋 shows the attributes of the

content of each node 𝑣𝑖 . The objective of the

embedding problem is to map nodes 𝑣𝑖 ∈ 𝑉 to low-

dimensional vectors 𝑧𝑖 ⃗⃗⃗⃗⃗⃗ ∈ 𝑅𝑑, with a formal

format 𝑓: (𝐴, 𝑋) → 𝑍, where 𝑧𝑖
𝑇 is the-i row of the

𝑍 ∈ 𝑅𝑛∗𝑑 matrix (n is the number of nodes, and d

is the packing dimension). We assume that Z is the

packing matrix, so the packings should preserve A's

topology and content information, X.

3.6. Notations:

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

9

Table 1 consolidates the essential symbols used

throughout this paper, encompassing various

matrices, graph properties, and representation

details relevant to the discussed methods. This

table serves as a reference for understanding the

notations and mathematical formulations

employed in our approach.

4. The proposed method: VGAEE

Our proposed model is designed to detect

communities within attributed social networks by

utilizing a parallel dual graph convolutional neural

network (GCN) for an efficient and interpretable

embedding process. The model is structured into

four distinct phases:

1. Graph Filtering: This initial phase filters

the graph to prepare it for further

processing, enhancing the clarity of the

underlying structures within the network.

2. Modularity and Markov Matrices

Calculation: The second phase calculates

modularity and Markov matrices, which

are crucial for understanding the

community structure and the transition

probabilities between nodes.

3. Network Embedding: During the third

phase, a Variational Graph AutoEncoder

is employed to generate a new and

meaningful representation of the network.

This step is pivotal for capturing the

essence of community structures in a

lower-dimensional space.

4. Clustering: The final phase involves

clustering the embedded representations

to identify distinct communities within

the network. This step categorizes nodes

into groups based on the learned

embeddings.

The output from each phase is meticulously

designed to feed into the subsequent phase as input,

ensuring a smooth transition and integration of data

throughout the model. Fig. 1 provides a detailed

schematic of the proposed method, visually

outlining each phase and their interconnections.

The upcoming sections will explore the intricacies

and functionalities of each phase in greater detail,

offering a comprehensive understanding of our

approach.

4.1. Graph Filtering

By implementing the k-core algorithm, we

strategically streamline the graph by removing

nodes of lesser significance, typically those with

low degrees. This method significantly reduces the

graph’s size and complexity, enhancing the

efficiency of community detection algorithms

applied thereafter. The k-core algorithm highlights

the graph’s most prominent regions, facilitating

more focused and faster computations. Essentially,

a k-core represents a maximal subset of a graph’s

nodes where each node maintains at least k

connections within that subset. For inclusion in the

k-core, a node’s degree within the subset must be

no less than k. The process involves calculating the

k-core by first removing nodes with degrees less

than k, then recalculating the degrees, and

iteratively repeating this removal process until all

nodes satisfy the k-core condition. Each iteration

carries a computational complexity of O(E), where

E denotes the total number of edges.

Through successive iterations, the graph is

methodically reduced by excluding nodes lacking

sufficient connectivity, ultimately yielding a

simplified core that depicts the most interconnected

nodes. As delineated in this section, the k-core

algorithm inherently defines a community based on

its density, thereby reducing the overall graph

size—this accelerates the community detection

process in subsequent phases and bolsters the

community-centric focus of graph neural networks.

The choice of k in this algorithm is contingent upon

the specific dataset being analyzed; in this study, a

k-value of 3 was selected based on a trial-and-error

method to optimize the balance between

simplification and structural integrity.

4.2. Calculation of the modularity matrix and

normalized cut matrix

This section details the calculation of the

modularity matrix (Matrix B) and the Markov

matrix (Matrix M) for the filtered graph, a product

of applying the 3-core algorithm. These

calculations are fundamental for understanding the

structural and transitional properties of the graph

and are crucial for subsequent analyses, such as

community detection or dynamic behavior studies.

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

10

Table 1: List of notations used in this paper

Descriptions Symbols Descriptions Symbols

A similarity matrix S Graph adjacency matrix A

)j; vivThe modularity value of (ijB Graph attribute matrix X

The modularity evaluation metric Q Number of nodes in the graph N

The pairwise node similarity

)j; vivvalue of (

ijS Representations of nodes Z

A degree matrix D Hidden dimensions H

A Laplacian matrix L Reconstructed graph adjacency matrix �̅�

A modularity matrix B Number of communities in the graph K

A Markov matrix M Feature representation at layer i+1 𝐻[𝑖+1]

Feature representation at layer i 𝐻𝑖 The Activation function 𝜎(0)

Based on layer i 𝑏𝑖 Weight at layer i 𝑊𝑖

Fig. 1: Flowchart of the proposed method VGAEE

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

11

4.3. Network embedding

The learning phase aims to achieve a robust

embedding of the data graph G= (V, E, A, X). To

accomplish this, we employ a Variational Graph

Autoencoder (VGA), which processes the entire

graph to learn an effective embedding. As depicted

in Figure 2, the workflow for this processing

method involves two primary components: the

encoder and the decoder.

Encoder: In a Variational Graph Autoencoder, the

encoder's role is pivotal. It takes two inputs: the

adjacency matrix A, representing the graph's

structure, and the node features matrix X. The

encoder's task is to map this high-dimensional

input data into a lower-dimensional latent

representation Z. This latent space Z captures the

essential features of the nodes while preserving the

structural and feature-based relationships inherent

in the graph. Typically, the encoder uses layers of

graph convolution to aggregate and transform the

input data into this compact representation. This

step is crucial as it determines how well the encoder

can identify and encode community-specific

features into the latent space.

Decoder: Following the encoding process, the

decoder takes the latent representation Z and aims

to reconstruct the original graph's structure. The

primary objective of the decoder is to validate the

effectiveness of the learned embeddings by

attempting to regenerate the adjacency matrix A

from Z. This process tests the encoder's ability to

embed nodes in such a way that the original graph

structure can be predicted from the embeddings. A

successful reconstruction indicates that the latent

space Z contains meaningful and comprehensive

information about the graph's structure and node

interactions.

The Variational Graph Autoencoder's effectiveness

hinges on its ability to reduce the dimensionality of

the graph data while retaining significant structural

and feature-related information. This capability is

crucial for tasks such as community detection,

where the goal is to cluster similar nodes more

effectively. By embedding nodes into a lower-

dimensional space that emphasizes community-

specific features, the Variational Graph

Autoencoder facilitates more accurate and efficient

community clustering. This method not only

streamlines computations but also enhances the

interpretability of the results, allowing for clearer

insights into the underlying community structure of

the graph.

4.3.1. Encoder Model

The encoder (inference model) of VGAE consists

of graph convolutional networks (GCNs) [51]. It

takes an adjacency matrix A and a feature

matrix X as inputs and generates the latent

variable Z as output. The first GCN layer

transforms the feature matrix into a lower-

dimensional form as defined by Equation 11:

 �̅� = 𝐺𝐶𝑁(𝑋, 𝐴) = 𝑅𝑒𝐿𝑈(𝐴 ̃𝑋𝑊0) (11)

𝐴 ̃ = 𝐷−
1

2 𝐴 𝐷 −
1

2

A-tilde is the symmetrically normalized adjacency

matrix. The second GCN layer generates μ and

logσ², which are defined by Equation 12:

𝜇 = 𝐺𝐶𝑁𝜇(𝑋, 𝐴) = 𝐴 ̃�̅�𝑊1 (12)

 logσ² = 𝐺𝐶𝑁𝜎(𝑋, 𝐴) = 𝐴 ̃�̅�𝑊1

Now if we combine the math of two-layer GCN as

defined in Equation 13, yields:

𝐺𝐶𝑁(𝑋, 𝐴) = 𝐴 ̃𝑅𝑒𝐿𝑈(𝐴 ̃𝑋𝑊0)𝑊1 (13)

Which generates μ and logσ². Subsequently, Z can

be determined using the parameterization trick, as

specified in Equation 14:

𝑍 = 𝜇 + 𝞼 ∗ Ɛ Where ε ~ N (0, 1). (14)

4.3.2. Decoder Model

The decoder (generative model) is defined by an

inner product between latent variable Z. The output

of our decoder is a reconstructed adjacency

matrix A-hat, which is defined as Equation 15:

�̂� = 𝜎(𝑧𝑧𝑇) (15)

Where σ(•) is the logistic sigmoid function. In

summary, the encoder is represented as Equation

16:

𝑞(𝑧𝑖|𝑋, 𝐴) = 𝑁(𝑧𝑖|𝜇𝑖 , 𝑑𝑖𝑎𝑔(𝜎2)) (16)

(13)

 (14)

 (16)

https://tkipf.github.io/graph-convolutional-networks/

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

12

Fig. 2: The workflow scheme of the Variational graph autoencoder in the proposed method

Fig. 3: The VGAEE Framework for Community Detection in Attributed Social Networks.

The decoder is represented in Equation 17:

𝑝(𝐴𝑖𝑗 = 1|𝑧𝑖, 𝑧𝑗) = 𝜎(𝑧𝑖
𝑇𝑧𝑗) (17)

In this paper, the encoder, a linear combination of

the matrices Q and M is initially computed, which

can be considered as the new input feature matrix

Xnew:

Xnew Q M   (18)

Where α and β are coefficients for the combination.

This Xnew is then fed into Graph Convolutional

Networks (GCN): The first GCN layer produces a

lower-dimensional feature representation:

0() ()1 ,new newX GCN X A ReLU AX W  

where A is the symmetrically normalized

adjacency matrix.

The second GCN layer generates the values μ and
2log : 1(,)GCN X A AX W   

𝑙𝑜𝑔𝜎2 = 𝐺𝐶𝑁𝜎(𝑋, 𝐴) = 𝐴 ̃𝑋 ̅ 𝑊1

The decoder then uses these parameters to

reconstruct the adjacency matrix:

2()A sigmoid AX W  Where W are the

weights associated with the decoder. Using the

reparameterization trick: Z    (0,1)Nò

is a random variable from the standard normal

distribution. These adjustments ensure that the

combined inputs are accurately reflected in the

model, allowing for more precise and complex

community structure identification.

4.3.3. Loss function and Optimization

The loss function for the Variational Graph

Autoencoder remains largely unchanged and is

defined in Equation 18. It comprises primarily of

the reconstruction loss between the input adjacency

matrix and the reconstructed adjacency matrix.

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

13

More specifically, this involves the binary cross-

entropy between the target (A) and the output (A′)

logits. The second part is the KL divergence

between q(Z | X, A) and p (Z), where p (Z) = N (0,

1). It measures how closely our q(Z | X, A) matches

p (Z).

After we get the latent variable Z, we want to find

a way to learn the similarity of each row in the

latent variable (because one row represents one

vertex) to generate the output adjacency matrix.

The inner product could calculate the cosine

similarity of two vectors, which is useful when we

want a distance measure that is invariant to the

magnitude of the vectors. Therefore, by applying

the inner product on the latent variable Z and Z^T,

we can learn the similarity of each node inside Z to

predict our adjacency matrix.

𝐿 = 𝐸𝑞(𝑍|𝑋, 𝐴)[𝑙𝑜𝑔𝑝(𝐴|𝑍)] − 𝐾𝐿[𝑞(𝑍|𝑋, 𝐴)||𝑝(𝑍)]

The proposed decoding model is used to

reconstruct graph data. We can reconstruct a graph

structure, content information X, or both. Here,

reconstruction of the graph structure is

recommended, which gives us a higher level of

flexibility so our algorithm preserves its

functionality even if content information X is

unavailable. Decoder 𝑝(�̂�|𝑍) predicts whether

there is a connection between the two nodes of a

connection. Specifically, we trained a connection

prediction layer based on graph embedding as per

Equation 19 and Equation 20.

𝑝(�̂�|𝑍) = ∏ ∏ 𝑝(�̂�𝑖𝑗 |𝑧𝑖 ,𝑧𝑗)
𝑛
𝑗=1

𝑛
𝑖=1 (19)

𝑝(�̂� 𝑖𝑗 = 1|𝑧𝑖 ,𝑧𝑗) = 𝑠𝑖𝑔𝑚𝑜𝑑(𝑧𝑖
𝑇 , 𝑧𝑗) (20)

The embedding of Z and �̂� Reconstructed graphs

are given in Equation 21:

�̂� = 𝑠𝑖𝑔𝑚𝑜𝑑(𝑍𝑍𝑇), ℎ𝑒𝑟𝑒 𝑍 = 𝑞(𝑍|𝑋, 𝐴) (21)

The graph data reconstruction error for a self-

encoder graph is minimized using Equation 22.

ℒ0 = 𝐸𝑞(𝑍|(𝑥,𝐴))[𝑙𝑜𝑔𝑝(�̂�|𝑍) (22)

4.4. Node clustering:

In this phase of processing, min-max scaling is

applied to normalize the Z_final feature vectors

that were obtained in the previous phase. This

normalization technique adjusts the data values so

that they range between zero and one. The

objective of using min-max scaling in this context

is to standardize the range of the feature vectors,

thus ensuring that no single feature dominates due

to its scale. This uniform scaling across all features

is essential for several reasons:

1. Enhanced Algorithm Performance:

Uniformity in feature scale helps machine

learning algorithms converge more

quickly. This is particularly important for

algorithms like K-nearest neighbors

(KNN), which rely on distance

calculations between points. If the scales

are not uniform, features with larger ranges

could disproportionately influence the

outcome, leading to biased results.

2. Improved Stability: Algorithms that

depend on distance measurements or

gradients are less likely to exhibit erratic

behavior during learning when all features

contribute equally. Stability in algorithm

performance leads to more reliable and

reproducible results.

3. Optimized Learning Efficiency: When all

features are scaled uniformly, each feature

has an equal opportunity to influence the

learning process, potentially increasing the

efficiency and effectiveness of the model.

Applying min-max scaling to the Z_final feature

vectors ensures that the subsequent steps,

especially those involving algorithms like KNN for

clustering or classification, operate under optimal

conditions. This preprocessing step is crucial for

achieving accurate and efficient outcomes in the

analysis of data, particularly in complex machine-

learning tasks that involve large and diverse

datasets. The decoder is represented in Equation

17:

𝑝(𝐴𝑖𝑗 = 1|𝑧𝑖, 𝑧𝑗) = 𝜎(𝑧𝑖
𝑇𝑧𝑗) (17)

Fig. 4 illustrates the architecture of our proposed

community detection model using VGAEE.

5. Experiment

In this section, we describe the comprehensive

experiments conducted to evaluate the

performance of the Variational Graph Autoencoder

Embedding Enhancer (VGAEE) against state-of-

the-art methods in real-world scenarios using valid

datasets. These experiments are designed to

provide a fair and rigorous comparison, focusing

on several critical aspects:

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

14

5.1. Experimental settings

 5.1.1. Datasets

In our study, we utilized datasets derived from

real-world applications to test our community

detection methods, ensuring a thorough evaluation.

Statistical information about the three datasets

employed is presented in Table 4, reference [57].

These datasets comprise citation networks where

the nodes symbolize papers and the edges denote

the citations between them. Each node is associated

with attributes that represent word packet

summaries of the paper abstracts, while the labels

indicate the topics of the papers.

 5.1.2. Evaluation metrics

This section presents various qualitative metrics for

evaluating community detection approaches,

classified into performance and goodness

measures. Performance measures assess the quality

of the communities identified by the algorithm

relative to real-world communities. Additionally,

goodness measures focus on the structural

characteristics of the communities that have been

detected [60]. Our evaluation of the proposed

method utilized two key metrics: normalized

mutual information and accuracy. Higher values in

these metrics signify better performance.

Subsequent sections will provide a detailed

discussion of these measures.

-Normalized Mutual Information

The normalized mutual information, calculated

using equation (26), measures the similarity

between the community set identified by the

proposed algorithm and the actual community [60].

𝑁𝑀𝐼 =
∑ ∑ 𝑛𝑖𝑗𝑙𝑛 (𝑛𝑖𝑗

𝑘
𝑗=1

𝑘
𝑖=1 .𝑛/𝑛𝑖

𝑐.𝑛𝑗
𝑐)

√(∑ 𝑛𝑖
𝑐 𝑙𝑛(

𝑛𝑖
𝑐

𝑛
)𝑘

𝑖=1)(∑ 𝑛𝑗
�́�𝑘

𝑗=1 𝑙𝑛 (𝑛𝑗
�́�/𝑛))

 (26)

Where k is the number of communities, n is the

number of nodes, nij is the number of nodes in the

optimized community set i such that the proposed

community set is in community j, 𝑛𝑖
𝑐 is the number

of nodes in the community i, which is in the

optimized community set, and 𝑛𝑗
𝑐 is the number of

nodes in community j.

-Accuracy

It assesses the authenticity of the community

structure. Similar to NMI, computing this measure

necessitates the use of an optimal community

setting, as outlined in equation (27) [60].

ACC =
∑ 𝑘𝑛

𝑖=1 (𝐶𝑖,𝑃𝑀(�́�𝑖))

𝑛
 (27)

Where n is the number of groups, and for a specific

group, i and 𝐶𝑖 ،�́�𝑖 are the communities of node i in

optimum and recommended community settings.

K(x, y) is a function equal to 1 when x=y and 0

otherwise.

5.1.3. Parameter Settings:

For our study, we structured the training set by

selecting 20 nodes from each class, resulting in a

total of 500 nodes for the validation set and 1,000

nodes for the test set. Our experiments were

conducted using a two-layer Graph Convolutional

Network (GCN) setup. The initial layer included 64

neurons, with each subsequent layer in the

contracting path halving the neuron count from the

previous layer. The training was facilitated using

the Adam optimizer, a popular choice due to its

efficiency, and the experiments were carried out

using both TensorFlow and PyTorch frameworks.

The learning rate was initially set at 0.01, adjusted

dynamically by a scheduler that reduced the rate

upon encountering a loss plateau, which helped

achieve more stable convergence. We implemented

a dropout rate of 0.5 to prevent overfitting and

capped the training at a maximum of 200 epochs.

The Relu activation function was applied following

each graph convolutional operation. Training was

halted if there was no decrease in the loss function

over 10 consecutive epochs.

Initialization of the initial weights for the two GCN

layers was done randomly, selected from a uniform

distribution. To ensure the robustness of our

results, each experiment was repeated ten times,

with the average scores reported subsequently.

Detailed parameter settings for these experiments

are summarized in Table 5, which includes

parameter names and their respective values.

5.1.4. Experimental results and analysis

This subsection presents the experimental results

analyzed from various evaluation angles to validate

the efficiency of our proposed model. We

conducted experiments using medium-scale

datasets including Cora, Citeseer, and PubMed,

and compared our model against three established

baseline categories to provide a thorough analysis.

The comparison categories are detailed as follows:

1. Node Feature-Based Methods: This

category focuses on the unique attributes

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

15

or characteristics of individual nodes.

Methods such as k-means and spectral

clustering, referred to here as spectral_f,

are prominent in this category. These

methods construct a similarity matrix

primarily using a linear kernel based on

node features.

2. Graph Structure-Based Methods: This

category emphasizes the intrinsic structure

of the graph. Techniques like spectral

clustering (Spectral_g) utilize the node

adjacency matrix to build the similarity

matrix. Notable methods in this group

include DeepWalk [14], which excels in

learning graph embeddings, and DNGR

[62], which merges spectral graph

clustering with deep neural networks for

complex graph representation.

Additionally, vGraph [63] is a probabilistic

generative model that learns community

membership and node representation

collaboratively, while Graph Encoder [64]

focuses on learning graph embedding for

spectral graph clustering.

3. Hybrid Methods: These methods

integrate both node attributes and graph

structure, typically resulting in enhanced

community detection outcomes despite

increased computational complexity.

Various graph autoencoder variants fall

within this category, including:

o GAE [65]: Utilizes neural networks

for learning graph representations.

o VGAE [65]: Advances GAE by

implementing a Variational

inference framework.

o MGAE [18]: Enhances

representation by marginalizing

specific graph properties.

o ARGA [66] and ARVGA [66]:

Employ adversarial and vibrational

regularization, respectively, to

refine graph embeddings.

o DAEGC [67]: Uses deep

autoencoders to reconstruct the

graph's adjacency matrix.

o AGE [56]: Enhances graph-based

learning tasks through a two-stage

process.
o AGC [55]: Leverages high-order graph

convolution to effectively understand a

graph's global structure.

o DBGAN [68] and GALA [69]: New

approaches using graph neural networks

for clustering and embedding node

features.

o CommDGI [11] and GC-VGE [70]:

Optimize the simultaneous learning of

node embeddings and cluster assignments.

o TADW [71]: Employs matrix

factorization for network representation

learning.

o RMSC [72] and RTM [72]: Focus on

robust multi-view spectral clustering and

learning topic distributions from text and

citations, respectively.

o GMIM [73]: Utilizes a mutual information

maximization approach for node

embedding.

o DGVAE [74]: Introduces a graph

Variational generative model with

Dirichlet distributions as priors on latent

variables.

o BernNet GCN [75] and WC-GCN [76]:

Utilize graph convolutional network

frameworks, with the former based on

Bernstein polynomial approximation.

o LGNN [35] and MRFasGCN [27]:

Specialized neural network models for

graph data, with MRFasGCN combining

GCN with a Markov random field model

for community detection.

These methods provide a broad spectrum of

approaches for analyzing and detecting community

structures within networks, facilitating a

comprehensive comparison against our proposed

model.

Tables 6-8 comprehensively compare the proposed

method with baseline community detection

methods based on their performance metrics. These

metrics include accuracy (ACC %) and normalized

mutual information (NMI %). The compared

approaches are often categorized into three groups

based on the type of learning: supervised, semi-

supervised, and unsupervised. Furthermore, these

strategies are classified into three groups based on

the input type: Features, graph topology, or a

hybrid of both.

Table 6 presents a comprehensive comparison of

various graph-based learning methods used for

community detection in the Cora dataset,

highlighting their performance in terms of accuracy

(ACC %) and normalized mutual information

(NMI %). Among the methods listed, the proposed

VGAEE stands out with the highest performance

metrics, achieving an ACC% of 84.5 and an NMI%

of 70.46. This represents a significant improvement

over both supervised and unsupervised approaches.

For instance, the closest competitors, MRFasGCN

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

16

and AGE, which are also unsupervised, recorded

ACC% of 84.3 and 76.8 and NMI% of 66.2 and

60.7, respectively. VGAEE's superior performance

suggests that its methodology for integrating graph

topology in an unsupervised learning framework

effectively captures the nuanced structures within

the community more accurately than other

methods. Furthermore, the results from VGAEE

are particularly notable when compared to

supervised methods such as LGNN and WC-GCN,

which, despite their structured learning paradigms,

do not achieve the same level of ACC or NMI.

Overall, the data underscores the efficacy of

VGAEE in community detection, setting a new

benchmark for future studies in this area.

To make a fair comparison with other related

works, we repeated the experiments on two

different datasets, the PubMed dataset and the

Citeseer dataset. We present the results and figures

of this new evaluation in Tables 7 and 8,

respectively.

In Table 7, the proposed VGAEE method outshines

both unsupervised and supervised learning

algorithms for the PubMed dataset, registering an

ACC% of 80.50 and an NMI% of 55.60. This

significantly distances it from traditional

unsupervised methods like K-means, Spectral-F,

and Spectral-G, which show considerable

variability in their results. When comparing

VGAEE with other advanced graph-based

methods, it still maintains a leading position. For

example, the semi-supervised MRFasGCN

achieves a higher NMI% at 40.7 but falls short in

ACC%, illustrating that while it effectively

captures mutual information within the data, it does

not necessarily translate to outright accuracy.

Similarly, the supervised BernNet GCN scores an

impressive NMI% of 51.40 but with a lower

ACC% of 61.25, indicating potential overfitting to

mutual information at the cost of general accuracy.

Among unsupervised competitors, AGE and

GMIM perform well, with AGE reaching an

ACC% of 71.1 and GMIM peaking at 70.87, yet

neither approaches the combined performance

metrics of VGAEE. Additionally, methods like

AGC and CommDGI, while competitive, do not

achieve the same balance between ACC and NMI,

suggesting that VGAEE's method of integrating

features and graph topology potentially offers a

more robust model for understanding complex

network structures. Overall, the superiority of

VGAEE in this dataset underscores its

effectiveness in handling the nuances of

community detection in large, complex networks.

Its ability to outperform existing algorithms,

particularly in unsupervised settings, sets a new

benchmark and indicates promising directions for

future research and application in social network

analysis and beyond.

Based on the analysis presented in Table 8, the

table showcases the performance of the VGAEE

method relative to other community detection

algorithms across various learning paradigms for

the Citeseer dataset. VGAEE, an unsupervised

method, stands out with an ACC% of 75.60 and an

NMI% of 57.06. Notably, VGAEE surpasses

popular unsupervised algorithms like K-means,

Spectral-F, and DeepWalk, which present

considerably lower metrics in both accuracy and

mutual information. Even when compared to the

semi-supervised MRFasGCN and supervised

methods such as BernNet GCN and WC-GCN,

VGAEE demonstrates competitive or superior

performance, particularly in accuracy. This

highlights VGAEE's efficacy in effectively

capturing and preserving the intrinsic community

structures in complex networks without requiring

labeled data. Positioned as a robust tool in the

unsupervised learning landscape for graph-based

community detection, VGAEE excels in handling

unlabeled and complex datasets while maintaining

a balance between accuracy and information

preservation.

The proposed VGAEE method demonstrated

outstanding results across all three datasets: Cora,

PubMed, and Citeseer, with its performance being

particularly notable on the Citeseer dataset. On

Citeseer, it achieved the highest accuracy and NMI

percentages among all methods evaluated, with

scores of 75.60% and 57.06% respectively. While

it also ranked among the top performers on the

Cora and PubMed datasets, with accuracies of

84.5% and 80.5% respectively, the Citeseer results

highlight its superior capability in community

detection within various network analyses. This

underscores the VGAEE method's robust

adaptability and effectiveness across diverse and

complex datasets, marking it as a potent tool for

intricate network analysis tasks. Figures 4, 5, and 6

illustrate the performance of the proposed method

on the Cora, PubMed, and Citeseer datasets,

respectively, based on the ACC (classification

accuracy) and NMI (normalized mutual

information) metrics, compared to baseline

methods. In all three figures, the ACC and NMI

values for the proposed method are highlighted in

bold above the corresponding bars to clearly

demonstrate its superiority over other methods.

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

17

 Table 4: Summary of real-world benchmarks on datasets.

Table 5: Detailed parameter setting

Datasets Training

Epoch

Learning

rate

Activation

Function

Weight

Decay

Optimizer GCN

layers

Dropout

rate

#Train/Validation

/Test Node

Cora 200 0.01 Relu 5e-3 Adam 64/32 0.5 140/500/1000

Citeseer 200 0.01 Relu 5e-3 Adam 64/32 0.5 120/500/1000

PubMed 200 0.01 Relu 5e-3 Adam 64/32 0.5 60/500/1000

Table 6: Performance comparison of different community detection methods on the Cora dataset; the best results are in bold.

Name of methods Learning type Input ACC% NMI%

K-means Unsupervised Feature 49.2 32.1

Spectral-F [77] Unsupervised Feature 34.7 14.7

Spectral-G [77] Unsupervised Graph 31.46 9.69

DeepWalk [14] Unsupervised Graph 56.20 39.87

Graph Encoder [78] Unsupervised Graph 32.5 10.9

vGraph[63] Unsupervised Graph 28.7 34.5

TADW [71] Unsupervised Feature & Graph 55.00 36.59

VGAE [65] Unsupervised Feature & Graph 63.56 47.45

MGAE [18] Unsupervised Feature & Graph 63.43 45.57

ARGE [66] Unsupervised Feature & Graph 60.84 42.21

ARVGA [66] Unsupervised Feature & Graph 62.83 45.93

DGVAE [74] Unsupervised Feature & Graph 64.42 47.64

AGC [55] Unsupervised Feature & Graph 68.92 53.68

CommDGI [11] Unsupervised Feature & Graph 69.8 57.9

DAEGC [67] Unsupervised Feature & Graph 70.4 52.8

GC-VGE [70] Unsupervised Feature & Graph 70.67 53.57

GALA [69] Unsupervised Feature & Graph 72.42 53.96

DBGAN [68] Unsupervised Feature & Graph 74.6 57.7

GMIM [73] Unsupervised Feature & Graph 74.8 56.0

AGE[56] Unsupervised Feature & Graph 76.8 60.7

MRFasGCN[27] Semi-supervised Feature & Graph 84.3 66.2

BernNet GCN[75] Supervised Feature & Graph 41.06 68.78

LGNN[35] Supervised Feature & Graph 79.04 -

WC-GCN[76] Supervised Feature & Graph 79.39 -

VGAEE(proposed method) Unsupervised

Feature & Graph 84.5 70.46

Num. of Communities #Node Attributes #Edges #Nodes Dataset

7 1,433 5,429 2,708 Cora [58]

6 3,703 4,715 3,312 Citeseer [58]

3 500 44,338 19,717 PubMed [59]

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

18

Table 7: Performance comparison of different community detection methods on the PubMed dataset; the best results are in

bold.

Name of methods Learning type Input ACC% NMI%

K-means Unsupervised Feature 55.59 24.34

Spectral-F [77] Unsupervised Feature 60.20 30.90

Spectral-G [77] Unsupervised Graph 37.98 10.30

DeepWalk [14] Unsupervised Graph 64.98 26.44

Graph Encoder[11] Unsupervised Graph 53.1 20.9

DNGR [62] Unsupervised Graph 25.53 20.11

vGraph [79] Unsupervised Graph 26.00 22.40

TADW [71] Unsupervised Feature & Graph 46.82 9.47

GAE [65] Unsupervised Feature & Graph 64.43 24.85

VGAE [65] Unsupervised Feature & Graph 64.67 23.94

MGAE [18] Unsupervised Feature & Graph 43.88 8.16

ARGA [66] Unsupervised Feature & Graph 65.07 29.23

ARVGA [66] Unsupervised Feature & Graph 62.01 26.62

DGVAE [74] Unsupervised Feature & Graph 67.56 28.72

AGC [55] Unsupervised Feature & Graph 69.78 31.59

CommDGI [11] Unsupervised Feature & Graph 69.90 35.70

DAEGC [67] Unsupervised Feature & Graph 67.10 26.60

GC-VGE [70] Unsupervised Feature & Graph 68.18 29.70

GALA [69] Unsupervised Feature & Graph 69.39 32.73

DBGAN [68] Unsupervised Feature & Graph 69.40 32.40

GMIM [73] Unsupervised Feature & Graph 70.87 32.43

AGE[56] Unsupervised Feature & Graph 71.1 31.6

MRFasGCN[27] Semi-supervised Feature & Graph 79.6 40.7

BernNet GCN[75] Supervised Feature & Graph 61.25 51.40

LGNN[35] Supervised Feature & Graph 72.64 -

WC-GC[76] Supervised Feature & Graph 79.41 -

VGAEE(proposed method) Unsupervised Feature & Graph 80.50 55.60

Table 8: Performance comparison of different community detection methods on the Citeseer dataset. The best results are in

bold.

Name of methods Learning type Input ACC% NMI%

K-means Unsupervised Feature 54.0 30.5

Spectral-F [77] Unsupervised Feature 23.9 5.6

DeepWalk [14] Unsupervised Graph 32.7 8.8

Graph Encoder[11] Unsupervised Graph 22.5 3.3

DNGR [62] Unsupervised Graph 32.6 18.0

RTM [72] Unsupervised Graph 45.1 23.9

RMSC [72] Unsupervised Graph 29.5 13.9

TADW [71] Unsupervised Feature & Graph 45.5 29.1

GAE [65] Unsupervised Feature & Graph 40.8 17.6

VGAE [65] Unsupervised Feature & Graph 34.4 15.6

MGAE [18] Unsupervised Feature & Graph 43.88 8.16

ARGA [66] Unsupervised Feature & Graph 57.3 35.0

ARVGA [66] Unsupervised Feature & Graph 54.4 26.1

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

19

AGE[56] Unsupervised Feature & Graph 70.2 44.8

MRFasGCN[27] Semi-supervised Feature & Graph 73.2 46.3

BernNet GCN[75] Supervised Feature & Graph 72.32 58.01

LGNN[35] Supervised Feature & Graph 73.15 -

 Supervised Feature & Graph 73.2 46.3

WC-GCN[76] Supervised Feature & Graph 75.18 -

VGAEE

(proposed method)

Unsupervised Feature & Graph 75.60 57.06

Fig. 4. Performance comparison of different community detection methods on the Cora dataset

Fig. 5. Performance comparison of different community detection methods on the PubMed dataset

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

20

Fig. 6. Performance comparison of different community detection methods on the Citeseer dataset

6. Conclusion and future work

This study introduced VGAEE, an innovative

unsupervised approach leveraging Variational

Graph AutoEncoders to enhance community

detection in attributed social networks. By

integrating node content with network topology,

VGAEE effectively captures complex community

structures, achieving superior performance metrics

across diverse datasets like Cora, Citeseer, and

PubMed. Notably, VGAEE consistently

outperformed both traditional and state-of-the-art

methods, demonstrating its robustness and

efficiency in handling large-scale network data

without the necessity for pre-labeled information.

The effectiveness of VGAEE was particularly

evident in its ability to maintain high accuracy and

mutual information scores, thereby providing a

more nuanced understanding of community

dynamics within large and complex networks.

Looking forward, several avenues could further

refine and expand the capabilities of the VGAEE

framework. First, exploring the integration of semi-

supervised learning protocols could potentially

enhance the model's accuracy and applicability to

even broader network types, including those with

sparse or incomplete labeling. Additionally,

adapting the model to dynamically evolving

networks where community structures change over

time would significantly increase its practical

utility in real-world scenarios. Another promising

direction involves enhancing the model's

scalability and efficiency through the incorporation

of more advanced graph neural network

architectures or optimization techniques. Lastly,

applying the VGAEE framework to other types of

data, such as multimodal networks or those with

highly heterogeneous attributes, could open new

research areas and applications, further cementing

its utility and impact in network analysis and

beyond.

References

1. Wen, X., et al.) 2016). A maximal clique based

multiobjective evolutionary algorithm for

overlapping community detection. IEEE

Transactions on Evolutionary Computation. 21(3):

p. 363-377. doi.org/10.1109/TEVC.2016.2622695

2. Lu, X., et al. (2018). Adaptive modularity

maximization via edge weighting scheme.

Information Sciences. 424: p. 55-68 .

doi.org/10.1016/j.ins.2017.09.040

3. Wu, W., et al. (2018). Nonnegative matrix

factorization with mixed hypergraph

regularization for community detection.

Information Sciences. 435: p. 263-281.
doi.org/10.1016/j.ins.2017.12.017

4. Altinoz, O.T., K. Deb, and A.E. Yilmaz. (2018).

Evaluation of the migrated solutions for

distributing reference point-based multi-objective

optimization algorithms. Information Sciences.

467: p. 750-765.
doi.org/10.1016/j.ins.2018.07.062

5. Whang, J.J., D.F. Gleich, and I.S. Dhillon. (2016).

Overlapping community detection using

https://doi.org/10.1109/TEVC.2016.2622695
https://doi.org/10.1016/j.ins.2017.09.040
https://doi.org/10.1016/j.ins.2017.09.040
https://doi.org/10.1016/j.ins.2017.12.017
https://doi.org/10.1016/j.ins.2018.07.062

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

21

neighborhood-inflated seed expansion. IEEE

Transactions on Knowledge and Data Engineering.

28(5): p. 1272-1284.
doi.org/10.1109/TKDE.2016.2528240

6. Fortunato, S. and D. Hric. (2016).Community

detection in networks: A user guide. Physics

reports. 2016. 659: p. 1-44.

doi.org/10.1016/j.physrep.2016.09.002

7. Garza, S.E. and S.E. Schaeffer. (2019). Community

detection with the label propagation algorithm: a

survey. Physica A: Statistical Mechanics and its

Applications. 534: p. 122058.
doi.org/10.1016/j.physa.2019.122058.

8. Cao, J., et al.(2018). Incorporating network

structure with node contents for community

detection on large networks using deep learning.

Neurocomputing. 297: p. 71-81.
doi.org/10.1016/j.neucom.2018.02.072

9. He, C., et al.(2019). Community detection method

based on robust semi-supervised nonnegative

matrix factorization. Physica A: Statistical

Mechanics and its Applications. 523: p. 279-291.
doi.org/10.1016/j.physa.2019.02.010

10. Zhengdao Chen, X.L., Joan Bruna. (2020).

Supervised Community Detection with Line Graph

Neural Networks. International Conference on

Learning Representations. p. 1-

24.openreview.net/forum?id=H1g0ZpA9FQ

11. Zhang, T., et al., CommDGI: Community

Detection Oriented Deep Graph Infomax.

2020. p. 1843-1852.
doi.org/10.1145/3340531.3412042

12. Tang, J., et al. (2015). Line: Large-scale

information network embedding. the 24th

international conference on world wide web.
doi.org/10.1145/2736277.2741093

13. Grover, A. and J. Leskovec. (2016). node2vec:

Scalable Feature Learning for Networks.

p.855-864. doi.org/10.1145/2939672.2939754

14. Perozzi, B., R. Al-Rfou, and S. Skiena. (2014).

Deepwalk: Online learning of social

representations. in Proceedings of the 20th ACM

SIGKDD international conference on Knowledge

discovery and data mining.
doi:10.1145/2623330.2623732

15. Chen, S. and W. Guo. (2023). Auto-encoders in

deep learning—a review with new perspectives.

Mathematics. 11(8): p. 1777.
doi:10.3390/math11081777

16. Zhao, S., et al. (2021). Hierarchical representation

learning for attributed networks. IEEE

Transactions on Knowledge and Data Engineering.

35(3): p. 2641-2656.
doi:10.1109/TKDE.2021.3111539

17. Lu, H.-Y., et al. (2024). Visual analytics of

multivariate networks with representation learning

and composite variable construction. IEEE

Transactions on Visualization and Computer

Graphics. doi:10.1109/TVCG.2024.3372078

18. Wang, C., et al. (2017). Mgae: Marginalized graph

autoencoder for graph clustering. Conference on

Information and Knowledge Management.

doi:10.1145/3132847.3132967

19. Li, B., et al. (2020). Multi-source information

fusion based heterogeneous network embedding.

Information Sciences. 534: p. 53-71.
doi:10.1016/j.ins.2020.05.017

20. He, C ,.et al. (2021). Boosting nonnegative matrix

factorization based community detection with

graph attention auto-encoder. IEEE Transactions

on Big Data. 8(4): p. 968-981.
doi:10.1109/TBDATA.2021.3074253

21. Yang, C., et al. (2021). Network Embedding for

Graphs with Node Attributes, in Network

Embedding: Theories, Methods, and Applications.

p. 29-38. doi:10.1007/978-981-16-2637-9_3

22. Zhang, Y., et al. (2022(. Spectral–spatial feature

extraction with dual graph autoencoder for

hyperspectral image clustering. IEEE

Transactions on Circuits and Systems for Video

Technology. 32(12): p. 8500-8511.
doi:10.1109/TCSVT.2022.3171421

23. Jin, D., et al. (2021). A survey of community

detection approaches: From statistical modeling

to deep learning. IEEE Transactions on

Knowledge and Data Engineering. 35(2): p. 1149-

1170. doi:10.1109/TKDE.2021.3124888

24. Liu, F., et al. (2020). Deep learning for community

detection: progress, challenges and opportunities.

arXiv preprint arXiv:2005.08225.
doi:10.48550/arXiv.2005.08225

25. Zhou, J., et al. (2020). Graph neural networks: A

review of methods and applications. AI Open. p.

57-81. doi:10.1016/j.aiopen.2021.01.001

26. Su, X., et al. (2022). A comprehensive survey on

community detection with deep learning. IEEE

Transactions on Neural Networks and Learning

Systems. doi:10.1109/TNNLS.2022.3145142

27. Jin, D., et al. (2019). Graph Convolutional

Networks Meet Markov Random Fields: Semi-

Supervised Community Detection in Attribute

Networks. the AAAI Conference on Artificial

Intelligence. 33(01): p. 152-159.
doi:10.1609/aaai.v33i01.3301152

28. Sun, H., et al. (2020). Network embedding for

community detection in attributed networks. ACM

Transactions on Knowledge Discovery from Data

(TKDD). 14(3): p. 1-25. doi:10.1145/3385414

29. Jin ,D., et al. (2019). Community detection via joint

graph convolutional network embedding in

attribute network. in International Conference on

Artificial Neural Networks. doi:10.1007/978-3-

030-30493-5_42

30. Luo, J. and Y. Du. (2020). Detecting community

structure and structural hole spanner

simultaneously by using graph convolutional

network based Auto-Encoder. Neurocomputing.

410: p. 138-150.
doi:10.1016/j.neucom.2020.06.035

31. Veličković, P., et al. (2017). Graph attention

networks. arXiv preprint arXiv:1710.10903.
doi:10.48550/arXiv.1710.10903

https://doi.org/10.1109/TKDE.2016.2528240
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physa.2019.122058
https://doi.org/10.1016/j.neucom.2018.02.072
https://doi.org/10.1016/j.physa.2019.02.010
https://openreview.net/forum?id=H1g0ZpA9FQ
https://doi.org/10.1145/3340531.3412042
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2939672.2939754

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

22

32. Goodfellow, I., et al. (2020). Generative

adversarial networks. Communications of the

ACM, 63(11): p. 139-144. doi:10.1145/3422622

33. Chen, H., et al. (2019). Exploiting centrality

information with graph convolutions for network

representation learning. International Conference

on Data Engineering.
doi:10.1109/ICDE.2019.00125

34. Xin, X., et al. (2017). Deep community detection

in topologically incomplete networks. Physica A:

Statistical Mechanics and its Applications. 469: p.

342-352. doi:10.1016/j.physa.2016.10.040

35. Cao, S., et al. (2023). LGNN: a novel linear graph

neural network algorithm. Frontiers in

Computational Neuroscience.
doi:10.3389/fncom.2023.1150105

36. Zhang, T., et al. (2020). CommDGI: community

detection oriented deep graph infomax.

International Conference on Information &

Knowledge Management.

doi:10.1145/3340531.3411973

37. Hu, R., et al. (2020). Going deep :Graph

convolutional ladder-shape networks. the AAAI

Conference on Artificial Intelligence.

doi:10.1609/aaai.v34i04.5767

38. Liu, Y., et al. (2020). Independence promoted

graph disentangled networks. AAAI Conference

on Artificial Intelligence.

doi:10.1609/aaai.v34i04.5768

39. Levie, R., et al. (2018). Cayleynets: Graph

convolutional neural networks with complex

rational spectral filters. IEEE Transactions on

Signal Processing. 67(1): p. 97-109.
doi:10.1109/TSP.2018.2879644

40. Geisler, S., D. Zügner, and S. Günnemann. (2020).

Reliable graph neural networks via robust

aggregation. Advances in neural information

processing systems. 33: p. 13272-13284.

doi:10.48550/arXiv.2010.15651

41. Cai, X. and B. Wang. (2023). A graph

convolutional fusion model for community

detection in multiplex networks. Data Mining and

Knowledge Discovery. 37(4): p. 1518-1547.
doi:10.1007/s10618-023-00933-9

42. Li, D., S. Zhang, and X. Ma. (2022). Dynamic

Module Detection in Temporal Attributed

Networks of Cancers. IEEE/ACM Transactions on

Computational Biology and Bioinformatics.

19(4): p. 2219-2230.
doi:10.1109/TCBB.2021.3093196

43. Li, D., Q. Lin, and X. Ma. (2021). Identification of

dynamic community in temporal network via joint

learning graph representation and nonnegative

matrix factorization. Neurocomputing. 435: p.

77-90. doi:10.1016/j.neucom.2021.01.019

44. Li, D., et al. (2021). Detecting dynamic community

by fusing network embedding and nonnegative

matrix factorization. Knowledge-Based Systems.

p. 106961. doi:10.1016/j.knosys.2021.106961

45. Li, D., X. Ma, and M. Gong. (2023). Joint

Learning of Feature Extraction and Clustering for

Large-Scale Temporal Networks. IEEE

Transactions on Cybernetics. 53(3): p. 1653-1666.
doi:10.1109/TCYB.2021.3128221

46. Huang ,-. H., et al. (2023). Diverse Deep Matrix

Factorization With Hypergraph Regularization for

Multi-View Data Representation. IEEE/CAA

Journal of Automatica Sinica.
doi:10.1109/JAS.2023.123203

47. Huang, H., et al. (2023). Exclusivity and

consistency induced NMF for multi-view

representation learning. Knowledge-Based

Systems. 281: p. 111020.
doi:10.1016/j.knosys.2023.111020

48. Huang, H., et al. (2024). Comprehensive Multiview

Representation Learning via Deep Autoencoder-

Like Nonnegative Matrix Factorization. IEEE

Trans Neural Netw Learn Syst. p. 5953-5967.
doi:10.1109/TNNLS.2022.3200905

49. Amirfarhad Farhadi, M.M. (2024). Arash Sharifi,

and Mohammad Teshnelab. Domaina daptation in

reinforcement learning: a comprehensive and

systematic study. Frontiers of Information

Technology & Electronic Engineering.
doi:10.1631/FITEE.2300356

50. Kanatsoulis, C.I., N.D. Sidiropoulos, and A.I.

Claims. (2022). GAGE: Geometry Preserving

Attributed Graph Embeddings. Fifteenth ACM

International Conference on Web Search and Data

Mining. p. 439–448.
doi:10.1145/3488560.3498387

51. Newman, M.E. (2006). Modularity and

community structure in networks. Proceedings of

the national academy of sciences. 103(23): p.

8577-8582. doi:10.1073/pnas.0601602103

52. Jianbo, S. and J. Malik. (2000). Normalized cuts

and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence. 22(8):

p. 888-905. doi:10.1109/34.868688

53. Liu, L., et al. (2015). Community detection based

on structure and content: A content propagation

perspective. IEEE international conference on

data mining. doi:10.1109/ICDM.2015.153

54. Shchur, O. and S. Günnemann. (2019).

Overlapping Community Detection with Graph

Neural Networks. doi:10.48550/arXiv.1909.12201

55. Zhang, X., et al. (2019). Attributed graph

clustering via adaptive graph convolution. arXiv

preprint arXiv:1906.01210.
doi:10.48550/arXiv.1906.01210

56. Cui, G., et al. (2020). Adaptive Graph Encoder for

Attributed Graph Embedding. p. 976-985.
doi:10.1145/3394486.3403150

57. Huang, W. (2021). Graph Auto-Encoders with

Edge Reweighting. International Journal of

Reconfigurable and Embedded Systems (IJRES).
doi:10.33899/rengj.2021.131549.1102

58. Sen, P., et al. (2008). Collective classification in

network data. AI magazine, 29(3): p. 93-

93doi:10.1609/aimag.v29i3.2157.

59. Namata, G., et al. (2012). Query-driven active

surveying for collective classification. in 10th

International Workshop on Mining and Learning

with Graphs. doi:10.1145/2442476.2442482

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

23

60. Rice, S.A. (1927). The identification of blocs in

small political bodies. American Political Science

Review. 21(3): p. 619-627. doi:10.2307/1945514

61. Zhu, W., X. Wang, and P. Cui, (2020). Deep

learning for learning graph representations, in

Deep learning: concepts and architectures. p. 169-

210. doi:10.1007/978-3-030-31756-0_6

62. Cao, S., W. Lu, and Q. Xu. (2016). Deep neural

networks for learning graph representations.

AAAI Conference on Artificial Intelligence.
doi:10.1609/aaai.v30i1.10105

63. Sun, F.-Y., et al. (2019). vGraph: a generative

model for joint community detection and node

representation learning, in Proceedings of the

33rd International Conference on Neural

Information Processing Systems. Curran

Associates Inc. doi:10.48550/arXiv.1906.07159

64. Tian, F., et al. (2014). Learning Deep

Representations for Graph Clustering.

Proceedings of the AAAI Conference on Artificial

Intelligence. 28(1). doi:10.1609/aaai.v28i1.8889

65. Kipf, T. and M. Welling. (2016). Variational

Graph Auto-Encoders.

doi:10.48550/arXiv.1611.07308

66. Pan ,S., et al. (2019). Learning Graph Embedding

With Adversarial Training Methods. IEEE

Transactions on Cybernetics. p. 1-13.
doi:10.1109/TCYB.2019.2932097

67. Wang, C., et al. (2019). Attributed Graph

Clustering: A Deep Attentional Embedding

Approach. 3670-3676.
doi:10.24963/ijcai.2019/510

68. Zheng, S., et al. (2020). Distribution-Induced

Bidirectional Generative Adversarial Network for

Graph Representation Learning. p. 7222-7231.
doi:10.1109/CVPR42600.2020.00728

69. Park, J., et al. (2019). Symmetric Graph

Convolutional Autoencoder for Unsupervised

Graph Representation Learning.
doi:10.48550/arXiv.1908.02441

70. Guo, L. and Q .Dai. (2021). Graph Clustering via

Variational Graph Embedding. Pattern

Recognition. 122: p. 108334.
doi:10.1016/j.patcog.2021.108334

71. Yang, C., et al.(2015). Network representation

learning with rich text information. in Twenty-

fourth international joint conference on artificial

intelligence. doi:10.5555/2832415.2832492

72. Xia, R., et al. (2014). Robust Multi-View Spectral

Clustering via Low-Rank and Sparse

Decomposition. Proceedings of the AAAI

Conference on Artificial Intelligence. 28(1).
doi:10.1609/aaai.v28i1.8990

73. Ahmadi, M., M. Safayani, and A. Mirzaei. (2022).

Deep Graph Clustering via Mutual Information

Maximization and Mixture Model. arXiv preprint

arXiv:2205.05168.
doi:10.48550/arXiv.2205.05168

74. Li, J., et al. (2020). Dirichlet Graph Variational

Autoencoder. doi:10.48550/arXiv.2005.11578

75. Xie, H. and Y. Ning. (2023). Community detection

based on BernNet graph convolutional neural

network. Journal of the Korean Physical Society.

83(5): p. 386-395. doi:10.1007/s40042-023-

00893-9

76. Deng, L., B. Guo, and W. Zheng. (2024). GCN-

based weakly-supervised community detection

with updated structure centres selection.

Connection Science. 36(1): p. 2291995.
doi:10.1080/09540091.2024.2291995

77. Ng, A., M. Jordan ,and Y. Weiss. (2002). On

Spectral Clustering: Analysis and an algorithm.

Adv. Neural Inf. Process. Syst.
doi:10.5555/2980539.2980649

78. Tian, F., et al. (2014). Learning Deep

Representations for Graph Clustering.

Proceedings of the National Conference on

Artificial Intelligence. p. 1293-1299.
doi:10.1609/aaai.v28i1.8889

79. Sun, F.-Y., et al. (2019). vGraph: A Generative

Model for Joint Community Detection and Node

Representation Learning.

doi:10.48550/arXiv.1906.07159

24

Journal of Optimization of Soft Computing (JOSC)

Vol. 3, Issue 1, pp: (24-29), Spring-2025

Journal homepage: https://sanad.iau.ir/journal/josc

Paper Type (Research paper)

Using Machine Learning to Discover Traffic Patterns

in Software Defined Networks

Abdulrazzaq Mosa Al-Mhanna1 and Pouya Khosravian Dehkordi1,*
1. Department of Computer Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.

Article Info Abstract

Article History:
Received: 2024/08/17

Revised: 2025/04/14
Accepted: 2025/05/23

DOI:

 In this research, we introduce a deep learning model based on

Convolutional Neural Networks (CNNs) along with the Bird Swarm

Optimization algorithm to identify and discover traffic patterns in Software-

Defined Networks (SDNs). The main objective of this study is to investigate

the capability of deep learning models in analyzing traffic data and identifying

unique patterns present in SDNs. Using a diverse and comprehensive dataset,

the proposed model is trained and evaluated. The use of CNNs, due to their

layered structure and deep learning capabilities, enables the identification of

unique traffic patterns that are prominently visible in SDNs. The proposed

model, with high accuracy and good generalization ability, can serve as an

effective tool in enhancing the accuracy and efficiency of traffic pattern

identification systems in software-defined networks. This research not only

demonstrates the superiority of deep learning models in traffic pattern

recognition but also provides practical and effective solutions for traffic

analysis and management in SDNs. The results of this study indicate that the

proposed model achieves an accuracy of 96.5%, suggesting that the proposed

method can significantly contribute to the development and improvement of

security systems and performance optimization in software-defined networks.

Keywords:
Network Traffic, Software-

Defined Networks, SDN,

Machine Learning

*Corresponding Author’s Email

Address: drkhosravian@iau.ac.ir

1. Introduction

Management and configuration of computer

networks has become a difficult and vital task due

to their complexity and dynamics. These networks

consist of a collection of switches, routers,

firewalls, and other intermediate devices that

work simultaneously. Proper implementation of

these networks is possible by operators dealing

with a limited set of configuration commands in

command-line environments and with complex

administrative tasks and policies. These policies

and complexities are not enough to react to the

continuous changes of the network. For this

reason, network configuration modifications are

done manually to adapt the network to the

changes. Operators use external tools to overcome

these limitations, and these constant changes may

lead to more configuration errors [1,24].

1.2. problem Statement

For network management, service measurement,

and network monitoring, traffic classification is an

intelligent process that involves categorizing

traffic into multiple groups. In addition, traffic

classification enables the configuration of access

restrictions, quality of service, and other network

security features efficiently and allocates

resources. Deep packet inspection and port-based

methods are popular methods for traffic

classification [2]. However, both of these methods

are currently less used, as most applications use

dynamic ports and the network communication is

encrypted. Therefore, it is very important to

mailto:drkhosravian@iau.ac.ir

Using machine learning to discover traffic patterns in software defined networks

25

develop a new classification method that is more

suitable for today's operational environment. The

purpose of this research is to discover network

traffic patterns with high accuracy. To extract the

patterns, a deep learning based approach is

proposed.

1.3 innovation in research

This research pushes the boundaries by exploring

and applying advanced deep learning architectures

such as deep neural networks (DNN),

convolutional neural networks (CNN), recurrent

neural networks (RNN), and attention

mechanisms. By doing so, an attempt is made to

provide a pioneering approach to modeling and

understanding network traffic patterns. In

summary, the innovative aspect of this research

lies in its pioneering use of deep learning models

to achieve high accuracy in discovering and

analyzing traffic patterns in software-defined

networks [25]. This approach has the potential to

transform network management, security, and

performance optimization, making it a cornerstone

for further advancements in this field.

2. Software networks

Organizations have invested heavily in

virtualization and hybrid clouds, but they still face

challenges, including quickly allocating network

connections while systems are running. Often

these problems arise due to issues related to policy

or implementation processes.

These problems can be partially solved by

creating virtual network infrastructure. This

infrastructure is easily reassigned, such as when a

new SAN or server is implemented. The idea

behind this software-defined network

management infrastructure, or SDN, is not that

new and has been around for over a decade. One

efficient definition of SDN is the separation of

data and control functions of routers and other

layer 2 infrastructure of conventional networks

using a programming interface.

2.1 PSO algorithm

The PSO algorithm is an optimization method

based on probability rules that was first invented

in 1995 by Kennedy and Aberhart [3] inspired by

the behavior of birds when searching for food. In

this algorithm, first a set of initial answers is

generated. Then, to find the optimal answer in the

space of possible answers, or to time the

generations, the answer search is done. Each

particle is defined multidimensionally with two

values of position and velocity, and at each stage

of the particle's movement, with two indices of

velocity and position, the best answers are

determined in terms of merit for all particles.

2.2Related works

Basic machine learning methods that enable traffic

classification in SDN are reviewed in this section.

Through the use of artificial intelligence (AI), machine

learning enables computers to recognize complex

patterns from massive data sets on their own.

Operationally, machine learning is divided into two

steps: 1) training, which involves providing the

machine learning algorithms with a subset of the data

set (called the training set) so that the system model

can learn from it, and 2) decision making, which is

capable of The system is trained to predict the result of

the new input using the model. Supervised,

unsupervised, semi-supervised and reinforcement

learning categories are used to group machine learning

algorithms [4], [5] and [6].

Numerous machine learning methods have been

developed over the years as a result of research efforts.

For problems with large data sets, machine learning is

often the most effective approach. Considering that

machine learning techniques are designed for pattern

recognition and data identification, they are suitable for

solving problems in SDNs.

3. Preposed method

Optimizing the parameters of convolutional neural

networks includes determining the appropriate

parameters, which results in significant accuracy in

each task. However, the task of optimizing a large

number of parameters is very difficult and

computationally expensive. Therefore, it is necessary

to implement optimization algorithms that reduce the

number of iterations. The present study is based on the

Particle Swarm Optimization (PSO) technique to find

the CNN model with the highest accuracy for breast

cancer detection. The development of a convolutional

neural network (CNN) involves the optimization of

several parameters and the precise choice of

architecture. Choosing the optimal parameters is very

important to obtain accurate results when using

Convolutional Neural Networks (CNN). Therefore, it is

a challenging task that requires a considerable level of

expertise.

The effectiveness of a CNN model depends on its

meta-parametric parameters, so some researchers

emphasize the necessity of fine-tuning these meta-

parameters to obtain positive results. Hence, it is a

challenging task that requires a considerable amount of

skill. The meta-parameters of the CNN architecture

along with their descriptions are presented in Table

1-3. Meta-heuristic algorithms are known as effective

techniques to improve the performance of CNN

architectures by optimizing their meta-parameters.

3.2 Implementation of neural network algorithm
optimized with particle swarm optimization algorithm

A. M. Al-Mhanna et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 24-29, 2025

26

In this section, we build a CNN from scratch (a new

model) to train a Convolutional Neural Network

(CNN). It consists of three convolution layers with

three maximum localization layers, one dropout layer,

one flattening layer, and two fully connected (FC)

layers. The activation function for each layer is the

ReLU function, except for the last layer which is

output and uses the sigmoid function. The output layer

uses a sigmoid function that maps the output value to

the interval [0, 1]

Figure 1-3: Flowchart of neural network optimized by

PSO

4.1 evaluation criteria

In this section, various evaluation criteria used to

measure the performance of machine learning models

in discovering traffic patterns in software-centric

networks are described in detail. These criteria include

accuracy, recall, and F1 score. Each of these metrics

evaluates different aspects of model performance and

provides a deeper understanding of model

performance.

 (2)

 (3)

4.2 Data collection

Software-oriented networks (SDN) are one of the

leading technologies in network management and

control, which enable centralized control and higher

flexibility by separating the control layer from the data

layer. In the field of SDN, multiple datasets are used

for various purposes, including network traffic

analysis, attack detection, and network performance

optimization.

The NSL-KDD dataset is one of the most popular

and comprehensive datasets in the field of network

security and intrusion detection. This dataset is an

improved dataset of KDD Cup 99 and is designed to

address its problems and limitations. The KDD Cup 99

dataset was introduced as one of the first and most

comprehensive datasets in the field of intrusion

detection.

• Duplicate data: The presence of a large number of

duplicate samples in the dataset, which caused the

machine learning models to mistakenly perform very

well.

• Imbalance in the data: unbalanced distribution of

different samples in the data set, which caused the

models to tend to oversampled classes.

4.3 The size of the parameters

In this project, our main goal is to use Convolutional

Neural Networks (CNN) and Particle Swarm

Optimization (PSO) algorithm to discover traffic

patterns in software-oriented networks. For this

purpose, a set of parameters for convolutional neural

network and PSO algorithm are considered.

4.4Training settings:

1. Initial learning rate for updating network weights.

A low value of this parameter allows the network to be

trained with smaller and more accurate steps.

2. The number of complete training iterations on the

training data. Increasing this value helps the model to

reach higher accuracy.

3. The number of examples in each small training

package. This parameter helps balance between

training speed and stability.

4.5.Simulation results

To evaluate the performance of the proposed

method, accuracy, recall and F1-Score criteria have

been used. 60% of the data was used for training and

40% for testing. The results obtained from the

evaluation of the proposed method and its comparison

with two other references are as follows:

Table 4-1: Comparison of the proposed method with

other methods

 evaluation criteria
accuracy recall F1-score

Preposed method 96.5 94.86 95.85

]38[87.6 89.6 90.01

 (1)

Using machine learning to discover traffic patterns in software defined networks

27

]40[92.38 93.11 94.87

The results show that the proposed method has the

highest accuracy and F1 criterion compared to the other

two references, and it is close to the highest value in

readout. This shows that the proposed method has been

able to establish a good balance between correctly

identifying attack samples and preventing false positive

samples.

The proposed method using convolutional neural

networks and particle swarm optimization algorithm

has been able to show better performance than the

previous methods in detecting penetration and traffic

analysis of SDN networks.

In this section, the results of the evaluation of

different machine learning algorithms to discover

traffic patterns in software-oriented networks (SDN)

are analyzed. The following table shows the accuracy

results of different algorithms:

Table 4-2: Comparison of the proposed method

with other algorithms

Algorithm Accuracy

proposed method 96.5

KNN 71.47

DT 95.76

SVM 95.74

The proposed algorithm, which uses convolutional

neural networks (CNN), has the best performance

among the investigated algorithms with an accuracy of

96.5%. This result shows that CNN, with its

capabilities in extracting complex features and deep

learning, has been able to identify traffic patterns well

and achieve higher accuracy than other algorithms.

The K-Nearest Neighbor (KNN) algorithm with

71.47% accuracy has the lowest accuracy among the

investigated algorithms. This result shows that KNN

may perform poorly when dealing with complex and

high-dimensional data. Due to the simplicity of this

algorithm and the inability to extract complex features,

it provides less accuracy.

The decision tree (DT) algorithm has performed

very well with an accuracy of 95.76% and is known as

one of the efficient algorithms in identifying traffic

patterns. Decision tree using tree structure and decision

rules has been able to achieve high accuracy and work

well with traffic data.

The support vector machine (SVM) algorithm has

also performed well with 95.74% accuracy. SVM has

been able to detect traffic patterns with high accuracy

by using feature spaces and optimal separators.

Although the accuracy of SVM is slightly lower than

decision tree, it is still in the high performance range.

The results show that the proposed method using

convolutional neural networks (CNN) has been able to

achieve the best accuracy among the investigated

algorithms. This shows the high power of CNN in

identifying and learning complex patterns in traffic

data. On the other hand, more traditional algorithms

such as KNN, DT and SVM have also performed

significantly, but could not reach the accuracy of the

proposed method.

According to these results, the use of convolutional

neural networks (CNN) as the proposed method in this

research is a suitable choice and can help improve the

accuracy and efficiency of traffic pattern detection

systems in software-based networks. This method has

many capabilities in analyzing complex data and

extracting important features, which has made it a

powerful tool in the field of machine learning.

5. Conclusion

the data set used in this research included various

network traffics, including normal and abnormal

traffics. The data has been collected from various

sources to have high diversity and realism. The data

pre-processing process has included cleaning,

normalization and extraction of important features,

which has greatly helped to improve the quality of the

data and the accuracy of the models.

In this research, four main algorithms have been

evaluated: k-nearest neighbor (KNN), decision tree

(DT), support vector machine (SVM) and

convolutional neural networks (CNN).

In addition to accuracy, other criteria such as recall

and F1 criteria have also been used to evaluate the

performance of models.

The proposed algorithm, which uses convolutional

neural networks (CNN), has the best performance

among the investigated algorithms with an accuracy of

96.5%. This result shows that CNN, with its

capabilities in extracting complex features and deep

learning, has been able to identify traffic patterns well

and achieve higher accuracy than other algorithms. The

readability of 94.86% and the F1 criterion equal to

95.85% also indicate the high ability of this algorithm

to correctly detect positive samples and reduce positive

and negative errors.

The K-Nearest Neighbor (KNN) algorithm with

71.47% accuracy has the lowest accuracy among the

investigated algorithms. This result shows that KNN

may perform poorly when dealing with complex and

high-dimensional data. Due to the simplicity of this

algorithm and the inability to extract complex features,

it provides less accuracy.

The decision tree (DT) algorithm has performed

very well with an accuracy of 95.76% and is known as

one of the efficient algorithms in identifying traffic

patterns. The decision tree has been able to categorize

the traffic data well and achieve high accuracy by using

the tree structure and decision rules. This algorithm is

one of the popular methods in traffic data analysis due

to its simplicity and high efficiency. But it has a

weaker performance than the proposed method.

One of the main advantages of a decision tree is that

it is naturally interpretable. This feature allows network

administrators and analysts to easily understand the

A. M. Al-Mhanna et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 24-29, 2025

28

reasons behind the decisions and classifications made

by the model. This interpretability is especially

valuable in cases where there is a need to explain the

results to non-technical managers.

Decision tree can also work well with data with

different features and incomplete data. However, one

of the weaknesses of this algorithm may be the creation

of overly complex trees and overfitting in the training

data. To reduce this problem, techniques such as

pruning are used to reduce the complexity of the tree

and improve the model.

The support vector machine (SVM) algorithm has

also performed well with an accuracy of 95.74%.

Using feature spaces and optimal separators, SVM has

been able to recognize traffic patterns with high

accuracy. Although the accuracy of SVM is slightly

lower than decision tree, it is still in the high

performance range. The recall and F1 criterion for

SVM are not available in this table, but it can be

expected that this algorithm also performs well in these

criteria.

One of the main advantages of SVM is its ability to

work with high-dimensional data and determine

optimal decision boundaries for separating classes.

This feature makes SVM perform very well, especially

in cases where the data is not linearly separable.

However, one of the challenges of using SVM is the

need to fine-tune its various parameters, such as the

tuning parameter (C) and choosing the appropriate

kernel type.

The results obtained from sources [38] and [40] have

also been used as a comparative measure. These results

show that other algorithms with accuracy, recall and F1

criterion have had acceptable performance of 87.6%,

89.6% and 90.01% respectively in [38] and 92.38%,

93.11% and 94.87% in [40], but still their performance

It was less than the proposed method (CNN).

The results show that the proposed method using

convolutional neural networks (CNN) has been able to

obtain the best accuracy, readability and F1 criterion

among the investigated algorithms. This shows the

high power of CNN in identifying and learning

complex patterns in traffic data. On the other hand,

more traditional algorithms such as KNN, DT and

SVM have also performed significantly, but could not

reach the accuracy of the proposed method.

According to these results, the use of convolutional

neural networks (CNN) as the proposed method in this

research is a suitable choice and can help improve the

accuracy and efficiency of traffic pattern detection

systems in software-based networks. This method has

many capabilities in analyzing complex data and

extracting important features, which has made it a

powerful tool in the field of machine learning.

Finally, the results of this research can pave the way

for future research in the field of improving machine

learning models to analyze and manage software-based

network traffic. Using more advanced deep learning

techniques, combining different models and improving

data preprocessing processes can lead to achieving

higher accuracy and efficiency in identifying traffic

patterns. In this way, the security and efficiency of

SDN networks will be significantly improved.

5.2 Future works

 can lead to the development and improvement of

current methods and open new horizons in the field of

using machine learning and deep learning in software-

based network traffic analysis and management.

Therefore, continuing research in this field and

applying new techniques can have positive effects on

the security and efficiency of SDN networks.

In general, the findings of this research show the

importance and efficiency of using advanced deep

learning models, especially convolutional neural

networks (CNN) in analyzing and identifying traffic

patterns in software-based networks (SDN). In this

section, research limitations and suggestions for future

research are discussed.

Reference

[1] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and A. V.

Vasilakos, “An effective network traffic classification

method with unknown flow detection,” IEEE

transactions on network and service management, vol.

10, no. 2, pp. 133-147, 2013.
10.1109/TNSM.2013.022713.120250

[2] J. Frank, "Artificial intelligence and intrusion

detection: Current and future directions." pp. 1-12.

http://dx.doi.org/10.14514/BYK.m.26515393.2022.10/

1.78-87

[3] Cotton, Michelle, et al. Internet assigned numbers

authority (IANA) procedures for the management of

the service name and transport protocol port number

registry. No. rfc6335. 2011.

[4] J. V. Gomes, P. R. Inácio, M. Pereira, M. M. Freire,

and P. P. Monteiro, “Detection and classification of

peer-to-peer traffic: A survey,” ACM Computing

Surveys (CSUR), vol. 45, no. 3, pp. 1-40, 2013.
https://doi.org/10.1145/2480741.2480747

[5] M. Shafiq, X. Yu, A. A. Laghari, L. Yao, N. K.

Karn, and F. Abdessamia, "Network traffic

classification techniques and comparative analysis

using machine learning algorithms." pp. 2451-2455.
10.1109/CompComm.2016.7925139

[6] S. Katal, and A. P. H. Singh, “A Survey of Machine

Learning Algorithm in Network Traffic Classification,”

International Journal of Computer Trends and

Technology (IJCTT), vol. 9, no. 6, 2014.
10.14445/22312803/IJCTT-V9P157

[7] Y. D. Goli, and R. Ambika, "Network traffic

classification techniques-a review." pp. 219-222.
https://doi.org/10.1007/978-981-19-8493-8_29

[8] T. T. Nguyen, and G. Armitage, “A survey of

techniques for internet traffic classification using

machine learning,” IEEE communications surveys &

tutorials, vol. 10, no. 4, pp. 56-76, 2008.
10.1109/SURV.2008.080406

[9] J. Kennedy, and R. Eberhart, "Particle swarm

optimization." pp. 1942-1948.
10.1109/ICNN.1995.488968

https://doi.org/10.1109/TNSM.2013.022713.120250
http://dx.doi.org/10.14514/BYK.m.26515393.2022.10/1.78-87
http://dx.doi.org/10.14514/BYK.m.26515393.2022.10/1.78-87
https://doi.org/10.1145/2480741.2480747
https://doi.org/10.1109/CompComm.2016.7925139
https://doi.org/10.1007/978-981-19-8493-8_29
https://doi.org/10.1109/SURV.2008.080406
https://doi.org/10.1109/ICNN.1995.488968

Using machine learning to discover traffic patterns in software defined networks

29

[10] M. Kubat, An introduction to machine learning:

Springer, 2017. https://doi.org/10.1007/978-3-319-

63913-0

[11] H. Wu, and S. Prasad, “Semi-supervised deep

learning using pseudo labels for hyperspectral image

classification,” IEEE Transactions on Image

Processing, vol. 27, no. 3, pp. 1259-1270, 2017.
10.1109/TIP.2017.2772836

[12] H.-K. Lim, J.-B. Kim, K. Kim, Y.-G. Hong, and

Y.-H. Han, “Payload-based traffic classification using

multi-layer lstm in software defined networks,”

Applied Sciences, vol. 9, no. 12, pp. 2550, 2019.
https://doi.org/10.3390/app9122550
[13] C. Xu, H. Lin, Y. Wu, X. Guo, and W. Lin, “An

SDNFV-based DDoS defense technology for smart

cities,” IEEE Access, vol. 7, pp. 137856-137874, 2019.
10.1109/ACCESS.2019.2943146

[14] B. Park, J. W.-K. Hong, and Y. J. Won, “Toward

fine-grained traffic classification,” IEEE

Communications Magazine, vol. 49, no. 7, pp. 104-

111, 2011. 10.1109/MCOM.2011.5936162

[15] X. Chang, F. Nie, Y. Yang, and H. Huang, "A

convex formulation for semi-supervised multi-label

feature selection."
https://doi.org/10.1609/aaai.v28i1.8922

[16] P. Wang, F. Ye, X. Chen, and Y. Qian, “Datanet:

Deep learning based encrypted network traffic

classification in sdn home gateway,” IEEE Access, vol.

6, pp. 55380-55391, 2018.
10.1109/ACCESS.2018.2872430

[17] C. Zhang, X. Wang, F. Li, Q. He, and M. Huang,

“Deep learning–based network application

classification for SDN,” Transactions on Emerging

Telecommunications Technologies, vol. 29, no. 5, pp.

e3302, 2018. https://doi.org/10.1002/ett.3302

[18] Z. Fan, and R. Liu, "Investigation of machine

learning based network traffic classification." pp. 1-6.

https://doi.org/10.1109/ISWCS.2017.8108090

[19] M. M. Raikar, S. Meena, M. M. Mulla, N. S.

Shetti, and M. Karanandi, “Data traffic classification in

software defined networks (SDN) using supervised-

learning,” Procedia Computer Science, vol. 171, pp.

2750-2759, 2020.

https://doi.org/10.1016/j.procs.2020.04.299

[20] F. A. M. Zaki, and T. S. Chin, “FWFS: Selecting

robust features towards reliable and stable traffic

classifier in SDN,” IEEE Access, vol. 7, pp. 166011-

166020, 2019.

https://doi.org/10.1109/ACCESS.2019.2953565

[21] A. Malik, R. de Fréin, M. Al-Zeyadi, and J.

Andreu-Perez, "Intelligent SDN traffic classification

using deep learning: Deep-SDN." pp. 184-189.

https://doi.org/10.1109/ICCCI49374.2020.9145971

[22] P. Wang, S.-C. Lin, and M. Luo, "A framework

for QoS-aware traffic classification using semi-

supervised machine learning in SDNs." pp. 760-765.

https://doi.org/10.1109/SCC.2016.133

[23] M. Amiri, H. Al Osman, and S. Shirmohammadi,

"Game-aware and sdn-assisted bandwidth allocation

for data center networks." pp. 86-91.

https://doi.org/10.1109/MIPR.2018.00023

[24] F. Kiyoumarsi , B. Zamani ,Extending the

Lifetime of Wireless Sensor Networks Using Fuzzy

Clustering Algorithm Based on Trust Model, Journal of

Optimization in Soft Computing , Issue 1 ,

2023.https://doi.org/10.82553/josc.2023.140207147833

32

[25] P. Khosravian Dehkordi A Comprehensive

Review on Service Function Chaining in Network

Environments Journal of Optimization in Soft

Computing , Issue 3,

2024.https://doi.org/10.82553/josc.2024.140212161104

657

https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1109/TIP.2017.2772836
https://doi.org/10.3390/app9122550
https://doi.org/10.1109/ACCESS.2019.2943146
https://doi.org/10.1109/MCOM.2011.5936162
https://doi.org/10.1609/aaai.v28i1.8922
https://doi.org/10.1109/ACCESS.2018.2872430
https://doi.org/10.1002/ett.3302
https://doi.org/10.1109/ISWCS.2017.8108090
https://doi.org/10.1016/j.procs.2020.04.299
https://doi.org/10.1109/ACCESS.2019.2953565
https://doi.org/10.1109/ICCCI49374.2020.9145971
https://doi.org/10.1109/SCC.2016.133
https://doi.org/10.1109/MIPR.2018.00023
https://doi.org/10.82553/josc.2023.14020714783332
https://doi.org/10.82553/josc.2023.14020714783332
https://doi.org/10.82553/josc.2024.140212161104657
https://doi.org/10.82553/josc.2024.140212161104657

30

Journal of Optimization of Soft Computing (JOSC)

Vol. 3, Issue 1, pp: (30-41), Spring-2025

Journal homepage: https://sanad.iau.ir/journal/josc

Paper Type (Review paper)

Review of Machine Learning Algorithm in Medical Health

Zahra Ghorbani1, Sahar Behrouzi-Moghaddam1, Shahram Zandiyan2, Babak Nouri-Moghaddam1,

Nasser Mikaeilvand 3, Sajjad Jahanbakhsh4, Ailin Khosravani1, Fatemeh Tahmasebizadeh1, Abbas

Mirzaei1*

1 Department of Computer Engineering, Ard.C., Islamic Azad University, Ardabil, Iran

2 Department of Computer Science and Mathematics, Central Tehran branch, CT.C., Islamic Azad University, Tehran, Iran

3 Department of Computer Engineering, ST,C., Islamic Azad University, Tehran, Iran
4 Department of Computer Engineering, Germi.C., Islamic Azad University, Germi, Iran

Article Info Abstract

Article History:
Received: 2025/04/13
Revised: 2025/06/10

Accepted: 2025/06/20

DOI:

 Recently, health-related data has been analyzed using a variety of

cutting-edge methods, including artificial intelligence and machine

learning. The application of machine learning technologies in the

healthcare industry is enhancing medical professionals' proficiency in

diagnosis and treatment. Researchers have extensively used medical

data to identify patterns and diagnose illnesses. Nevertheless, little

research has been done on using machine learning algorithms to

enhance the precision and usefulness of medical data. An extensive

analysis of the many machine learning methods applied to healthcare

applications is given in this work. We first examine supervised and

unsupervised machine learning techniques, and then we investigate the

applicability of time series tasks on historical data, evaluating their

appropriateness for datasets of varying sizes.

Keywords:
Machine Learning; Medical;

Supervised Learning;

Classification.

*Corresponding Author’s Email

Address: a.mirzaei@iau.ac.ir

1. Introduction

The healthcare service system plays a crucial

role in the medical domain, addressing significant

demands on human life. To advance, healthcare

providers in developing countries are increasingly

adopting intelligent technologies such as artificial

intelligence (AI) and machine learning. The

integration of AI has spurred advancements in

human-centered healthcare systems. AI

technologies have notably influenced the

development of intensive care and supervisory

activities in hospitals and clinics [1-3].

Extensive research by Jafar Abdollahi since

2019 has highlighted the successful application of

AI, including machine learning and deep learning,

in medical image and healthcare analysis. His

research covers a range of conditions such as

bupropion, diphenhydramine, breast cancer,

medicinal plants, epidemics, stroke, lung cancer,

social networks, diabetes, suicides, coronary artery

disease, and more, demonstrating promising results

[2-5].

Machine learning, an automated process that

enables computers to learn and improve

performance without explicit programming, is

central to these advancements. Unlike systems

reliant on preset rules, machine learning utilizes

complex algorithms and statistical techniques to

analyze data and make accurate predictions. The

dataset's quality is critical for machine learning

accuracy, leading to more precise forecasts as the

data improves [3,18].

Machine learning has found applications across

various industries, including banking, retail, and

healthcare. In healthcare, it offers significant

opportunities for disease detection and treatment.

One of its key benefits is enhancing the accuracy

of data forecasting and classification, which is

particularly valuable in medical analysis. As more

data is collected, the prediction model's ability to

make precise decisions improves.

mailto:a.mirzaei@iau.ac.ir

Review of Machine Learning Algorithm in Medical Health

31

Overall, the healthcare service system is vital

in addressing human needs, and advanced

technologies like AI and machine learning are

instrumental in advancing and refining healthcare

services. The integration of AI has led to

significant developments in human-centered

healthcare systems. Since 2019, Jafar Abdollahi’s

research has demonstrated the successful

application of AI in diagnosing various diseases

and analyzing medical images, yielding

encouraging results across multiple conditions.

2. OVERVIEW OF MACHINE-LEARNING IN

HEALTHCARE

 Machine learning, a branch of artificial
intelligence, focuses on using data to train
algorithms so they can act or anticipate without
explicit programming. Machine learning has the
ability to completely change how the healthcare
sector recognizes, treats, and prevents diseases, as
seen in Figure 1. The following are a few possible
uses of machine learning in the medical field [4,19]:

Fig 1 illustrates, machine learning has the power to radically
alter how we identify, manage, and prevent diseases in the
healthcare industry [19].

A. Predictive analytics: Utilizing information
from claims data, electronic health records, and
other sources, machine learning algorithms can
forecast the probability of certain health
outcomes, like hospital readmissions or the
onset of chronic illnesses. This capacity permits
early preventative treatments and enables
medical practitioners to identify individuals
who are more likely to have negative effects
[6,20].

B. Diagnosis and treatment: Diagnoses and the
best course of treatment for a patient can be
made with the assistance of machine learning
algorithms that have been trained on medical
images, such as CT scans and X-rays [5,21].

C. Personalized medicine: Using unique patient
variables like genetics and medical history,
machine learning may be used to forecast
which drugs a patient is most likely to react to
[7, 22].

D. Clinical decision support: Clinical decision
support systems may incorporate machine

learning algorithms to help medical personnel
make better decisions about patient care [8, 23].

E. Population health management: Data from huge
populations may be analyzed using machine
learning to find trends and patterns that can
guide the creation of public health programs.
All things considered, using machine learning
to healthcare might lead to better patient
outcomes, lower costs, and increased system
efficiency [9, 24].

3. REVIEW OF MACHINE LEARNING

 The two main subcategories of machine
learning are supervised learning and unsupervised
learning, as seen in Figure 2. In order to forecast
future results, supervised learning algorithms are
trained with input and output data from previous
occurrences. Unsupervised learning algorithms, on
the other hand, find underlying structures or hidden
patterns in the given data without the need for pre-
existing labels. Unsupervised learning mostly
concentrates on clustering tasks, whereas
supervised learning is appropriate for both
classification and regression problems [10- 13].

Fig 2. Supervised learning and unsupervised learning are the
two primary subcategories of machine learning [13].

 Classification algorithms, which predict
categorical outcomes, are a subset of supervised
machine learning approaches. Unlike unsupervised
learning, supervised learning relies on known and
labeled training data. The data is divided into
training and testing sets [14-17]. Classification
algorithms sort incoming data into distinct
categories to make predictions. Supervised machine
learning is commonly applied in fields such as
speech recognition, medical image interpretation,
and heart attack prediction [7, 18].

Z. Ghorbani et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 30-41, 2025

32

Using the supplied training data, categorization

models are created in supervised learning. Then, more
unlabeled data can be classified by these models. One
output variable from the training dataset needs to be
categorized. In order to categorize the test data,
classification algorithms first recognize unique patterns
in the training data [13]. Neural networks, decision trees,
naïve Bayes, K-nearest neighbors, and support vector
machines are examples of common classification
techniques.

A. Supervised Machine Learning

 Decision Trees(DT)

 A decision tree classifier uses a tree-like diagram to
illustrate possible outcomes, final values, and options.
This method involves computing the probabilities of
selecting different actions through a computer
algorithm. The process begins with samples of training
data and their associated category labels. The decision
tree method recursively partitions the training data into
subsets based on feature values, resulting in subgroups
with more homogeneous data compared to the parent set
[19, 25].

Fig 3. Visual illustration of the DT algorithm [13]

In a decision tree, every internal node denotes a test
feature, every branch node shows the test's outcome, and
every leaf node shows the class label. The decision tree
classifier classifies an unknown sample using the route
from a root node to a leaf node, and it utilises this path
to derive the category label [15–17].

 Support Vector Machine (SVM)

The Support Vector Machine (SVM) is a classical
machine learning method used for addressing
classification problems. SVM plays a vital role in
supporting a wide range of applications in extensive data
mining environments [30]. It leverages specific
characteristics of a model to train data and generate
accurate predictions from a given dataset [20–22].

Fig 4. Visual illustration of the SVM algorithm [22].

Support Vector Machine's mathematical intuition:
Think of a binary classification task where there are two
classes, denoted by the labels +1 and -1. The input
feature vectors (X) and the matching class labels (Y)
comprise our training dataset. The equation for the linear
hyperplane can be written as:

0 (1)Tw x b 

The direction perpendicular to the hyperplane, or the
normal vector, is represented by the vector W. The
offset, or distance, of the hyperplane from the origin
along the normal vector w is represented by the
parameter b in the equation. The distance between a
data point 𝑥𝑖and the decision boundary can be calculated
as:

(2)
|| ||

T

i
i

w x b
d

w




where ||w|| represents the Euclidean norm of the weight
vector w. Euclidean norm of the normal vector W.

 Naïve Bayes (NB)

An approach that is frequently used for classification
jobs is the Naïve Bayes algorithm. It is one of the most
basic types of Bayesian networks since it is predicated
on the idea that there is a single parent node with a finite
number of independent child nodes. As shown in Figure
6, the Naïve Bayes technique multiplies the individual
probabilities of each attribute-value combination to
determine the probability of a classification. This
approach works incredibly well in cases where the
qualities are independent. The Naïve Bayes method's
effective computational training time is one of its main
benefits. The classification performance of the algorithm
can also be improved by eliminating unnecessary
characteristics [23-26].

0 1 1 2 2(...

1
(1|) (8)

1 x x nxn
P y x

e
       

 


 (|)P c x = Posterior probability the

probability of class C given the features X.

 (|)P X C = Likelihood the probability of the

features X given the class C.

Review of Machine Learning Algorithm in Medical Health

33

 ()P c = Class Prior Probability the probability

of the class C occurring.

 ()P x = Predictor Prior Probablility the

probability of the features X occurring.

 K-Nearest Neighbours (K-NN)

 In data mining classification technology, the K-
nearest neighbors (K-NN) classification technique is a
straightforward and intuitive method. The K-NN
algorithm operates on the principle that an unknown
pattern can be classified by considering the K nearest
neighbors. By specifying a value for K, the algorithm
identifies the category based on the majority class of the
K training samples most similar to the unknown pattern.
Factors such as the chosen K-value and the distance
metric play crucial roles in the performance of the
classifier [27].

Eculidean=

2 2 2

1 2 1 2 1 2() () () (4)d x x y y z z     

 Manhattan =
1

| | (5)
k

i i

i

X y




Minkowski =

1/

1

(| |) (6)

q
k

i i

i

X y


 
 

 


Fig 5. Visual illustration of the KNN algorithm [27].

One advantage of the K-NN method is its relatively
low training time compared to other machine learning
algorithms. However, it may require more
computational time during classification. Despite this,
K-NN is favored for its simplicity and ease of use in
classification tasks. It is particularly effective when
dealing with datasets that have multiple class labels.
Additionally, the data training phase of K-NN tends to
be faster than that of other machine learning algorithms
[27, 28].

 Linear Regression (LR)

 Linear regression is a straightforward and

commonly used method for quantifying the relationship

between response variables and continuous predictors.

Its simplicity makes it an optimal choice for analyzing

small datasets with high accuracy, as it is relatively easy

to understand and interpret. However, if there is an

excessive number of predictor variables, the model may

struggle to produce reliable results and might not

provide the desired outcome [29-31].

0 1 (7)y x   

Where:

 The dependent variable, often known as the

target or outcome variable, is Y.

 The independent variable, often known as the

predictor or feature, is x.

 The value of y when x=0 is the regression

line's intercept, or β0.

 The regression line's slope, or the change in y

for every unit change in x, is β1.

 The error term, denoted by ϵ, is the

discrepancy between the observed and model-

predicted values.

 Logistic Regression (LR)

Unlike linear regression, which predicts continuous
data, logistic regression is primarily used for predicting
discrete class labels. In classification problems, logistic
regression estimates the probability of a sample
belonging to one of two possible categories. This is
achieved by applying a logistic function, which maps the
predicted values to a binary outcome of either 0 or 1.
Consequently, logistic regression can indicate the
category to which a sample belongs based on the output
variable. Researchers have utilized logistic regression to
predict health-related behaviors [32-35].

0 1 1 2 2(...

1
(1|) (8)

1 x x nxn
P y x

e
       

 


Where:

 P(y=1∣x) is the probability that the dependent

variable y is 1 given the independent variables

x1,x2,…,xn.

 β0 is the intercept (the bias term).

 β1,β2,…,βn are the coefficients for the

independent variables x1,x2,…,xn

 e is the base of the natural logarithm

(approximately equal to 2.718).

 Ensemble Methods

 Ensemble methods leverage the strengths of
multiple machine learning algorithms rather than relying
on a single algorithm. By combining and integrating
various models, ensemble approaches enhance the
overall learning process. One key advantage of
ensemble methods is their ability to achieve high

Z. Ghorbani et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 30-41, 2025

34

predictive accuracy, which can be superior to that of
individual models. However, this increased accuracy
often comes at the cost of a more complex training
process, which can impact efficiency [36, 37].

Fig 6. Visual illustration of the Ensemble algorithm [36].

Currently, two common types of ensemble learning
techniques are bagging-based methods and boosting-
based methods. For instance, Random Forest is a
representative algorithm of bagging, while Adaboost,
Gradient Boosting Decision Trees (GBDT), and
XGBoost are examples of boosting-based algorithms
[38, 39].

 Support Vector Regression (SVR)

 An examination of the connection between one or
more independent variables and a continuous dependent
variable is done using the supervised regression
approach known as support vector regression (SVR).

Fig 7. Visual illustration of the SVR algorithm.

While linear regression techniques depend on certain
model assumptions, support vector regression (SVR)
focusses on identifying the significance of variables in
order to describe the connection between inputs and
outputs. By keeping the inaccuracy within a certain
tolerance margin, this method improves the modelling
and prediction of continuous data [33].

B. Unsupervised Machine Learning

 Unsupervised machine learning techniques use
sophisticated models with millions of parameters to

analyze vast quantities of unlabeled data in a highly non-
linear manner. These methods are popular tools for
clustering and exploratory data analysis, allowing for the
discovery of hidden patterns within the data. Unlike
supervised learning, which relies on labeled data,
unsupervised learning draws inferences from datasets
that lack explicit output labels. Key applications of
unsupervised learning include market research, item
recognition, and DNA sequence analysis [34].

Putting incoming data into meaningful categories
based on similarities and features rather than
predetermined labels is the fundamental idea behind
unsupervised learning. This is grouping data according
to innate patterns instead of precise categorizations.
Hard clustering and soft clustering are the two primary
categories of clustering techniques. While soft clustering
permits data points to belong to numerous clusters with
differing degrees of membership, hard clustering
allocates each data point to a single cluster. Popular
techniques for unsupervised machine learning are
covered in the section that follows [40, 41].
A. K-Means

K-means is a well-liked unsupervised learning
method that is effective and straightforward for handling
clustering issues. By minimizing the total squared
distances between each point and the centroid of its
designated cluster, the K-means method divides data
points into kkk clusters. This technique is popular for a
variety of clustering applications because it effectively
divides data into clusters with low intra-cluster variance
[42, 43].
B. K-Medoids

 Unlike K-Means, which uses the mean value of data
points in a cluster as a reference point, K-Medoids
employs actual data points as the central objects, or
medoids, to determine cluster centers. K-Medoids
assigns each data point to the nearest medoid and builds
clusters around these central objects. Although K-
Medoids can produce conflicting results depending on
the initial medoids, it is less sensitive to outliers and can
adapt cluster memberships more effectively than K-
Means [44, 45].

C. Using Hierarchical Grouping

One popular technique in data mining for cluster
analysis is hierarchical cluster analysis (HCA), also
referred to as hierarchical clustering. By comparing the
traits inside each cluster, it seeks to establish a
hierarchical structure of clusters. This methodology
creates tiered sets of clusters repeatedly, resulting in a
diagram that resembles a tree called a dendrogram. The
relationships between data points and clusters are
visually represented by the dendrogram, where each
level denotes a distinct stage of cluster development [46-
49].

Review of Machine Learning Algorithm in Medical Health

35

Table 1. Gives a quick overview of the pros and cons of each algorithm in a clear and concise manner [46-49].

SUPERVISED UNSUPERVISED

Algorithms Pros Cons Algorithms Pros Cons

DT

Easy to interpret,
handles both

categorical and
numerical data,
works well with
non-linear data.

P
ro

n
e to

 o
v
erfittin

g
,

esp
ecially

 w
ith

 n
o

isy

d
ata.

K
-M

ean
s

Fast, scalable,
and works well

with large
datasets.

Effective for
spherical
clusters.

Sensitive to
initial centroids

and outliers,
struggles with

clusters of
varying sizes or
densities, and

assumes
spherical
clusters.

SVM

Effective in high-
dimensional spaces,
robust to outliers,

and works well with
clear margin
separation.

Computationally
intensive, less
effective with

large datasets, and
difficult to
interpret.

K
-M

ed
o
id

s
More robust to

outliers and noise
compared to K-

Means, as it uses
medoids instead

of means.

Slower and
more

computationally
intensive than

K-Means,
especially with
large datasets.

KNN

Simple to
implement, no
training phase,

effective with small
datasets.

Computationally
expensive with
large datasets,

sensitive to
irrelevant features,

and storage-
intensive.

U
sin

g
 H

ierarch
ical G

ro
u
p
in

g

Does not require
the number of
clusters to be

specified,
provides a

hierarchy of
clusters, and can
capture complex
cluster structures.

Computationally
expensive,

especially for
large datasets,

and sensitive to
noise and
outliers.

Linear
Regression

Simple and
interpretable, works

well with linear
relationships, and

easy to implement.

Assumes linearity,
sensitive to

outliers, and may
underperform with

non-linear data.

Logistic
Regression

Interpretable, works
well with binary

classification, and
can handle linear

decision boundaries.

Assumes linearity,
struggles with

complex
relationships, and

sensitive to
outliers.

Ensemble
Methods

Combines multiple
models to improve

performance,
reduces overfitting,

and increases
accuracy and
robustness.

More complex and
computationally
expensive, less

interpretable, and
requires careful

tuning.

SVR

Effective for
regression with

high-dimensional
data, robust against
overfitting in high-
dimensional spaces.

Similar challenges
as SVM, including

computational
complexity, and
less intuitive to

interpret.

Z. Ghorbani et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 30-41, 2025

36

The table compares various algorithms, highlighting
that Decision Trees are easy to interpret and handle
different data types but are prone to overfitting. SVM is
effective in high-dimensional spaces but is
computationally intensive. KNN is simple and effective
with small datasets but struggles with large datasets and
irrelevant features. Linear and Logistic Regression are
interpretable and handle linear relationships well but are
limited by their assumption of linearity and sensitivity to
outliers. Ensemble Methods improve accuracy and
reduce overfitting by combining models but are more
complex and less interpretable. SVR shares SVM's
strengths in high-dimensional regression but also its
computational challenges. K-Means is fast and scalable
but sensitive to outliers and initial centroids, while K-
Medoids is more robust to outliers but slower.
Hierarchical Grouping captures complex structures
without needing a preset number of clusters but is
computationally expensive and sensitive to noise.

4. EVALUATION MATRIX OF SUPERVISED

CLASSIFICATION ALGORITHMS

Three standard measures are used to assess the

performance of supervised classification algorithms:

specificity, sensitivity, and accuracy. Specificity is the

amount of true negative data points identified in actual

negative data points (TP = true positive, TN = true

negative, FN = false negative, and FP = false positive);

accuracy is the percentage of prediction rate in the

model; and sensitivity is the amount of true positive

data points correctly identified in actual positive data

points [3- 5].

Accuracy: A category's accuracy is calculated by

dividing its "correct predictions made" total by the

number of "total predictions made" by a category that is

similar.

 (9)
TP TN

Accuracy
TP FP TN FN




  

Sensitivity: Real positive rate: If the individual has a

positive result, the model will be positive in a tiny

fraction of situations, according to the formula below.

Sensitivity (10)
TP

TP FN




Specificity: If the person gets a poor result, it will only

happen in a tiny portion of situations. This is calculated

with the following formula [50-53].

Specificity (11)
TN

TN FP




5. DISSCUSION

 Healthcare has shown considerable promise

for both supervised and unsupervised machine learning

technologies. The applications of these approaches vary

based on the type of data and the specific tasks at hand,

each with its own advantages and limitations.

With supervised learning, a model is trained

using labeled data in order to forecast outcomes based

on input features [65-67]. It has been widely applied in

the medical field to diagnose, classify, and predict

prognoses [68-70]. To predict cardiovascular risk,

identify malignant cells, and classify medical images,

for instance, supervised learning algorithms such as

decision trees, logistic regression, and support vector

machines have been used [71-75]. Supervised learning

is useful, but it needs a lot of labeled data, and it can be

biased if the training set isn't typical of the general

population.

On the other hand, unsupervised learning makes use of

unlabeled data to train a model that, in the absence of

explicit guidance, finds patterns and correlations on its

own [14, 15, 16]. This method works well in the

medical field for tasks like clustering, anomaly

detection, and feature extraction [54-57]. For example,

K-means clustering techniques have been used to

identify uncommon conditions, extract pertinent

information from medical images, and classify patients

based on shared features [58-60]. Unsupervised

learning, however, occasionally yields outcomes that

are difficult to interpret and are not clinically relevant.

Thus, there are clear advantages and

disadvantages to both supervised and unsupervised

learning in the healthcare industry. The particular task

at hand, the type of data, and the resources at hand all

influence which of these approaches is best. Machine

learning will be essential to enhancing patient outcomes

and advancing medical research as long as healthcare

data is available.

 Machine learning algorithms each have

distinct strengths and weaknesses in medical health

applications. Decision Trees are easy to understand but

can overfit and be biased. Random Forests reduce

overfitting but can become complex and resource-

intensive. Support Vector Machines (SVM) perform

well in high-dimensional spaces but are expensive and

hard to interpret. Neural Networks capture complex

patterns across various data types but require significant

resources and are often seen as a "black box." K-Nearest

Neighbors (KNN) is simple and flexible but

computationally expensive and sensitive to irrelevant

features. Logistic Regression is efficient and

interpretable but limited to linear relationships.

Gradient Boosting Machines (GBMs) offer high

accuracy but are prone to overfitting and are complex to

implement. Principal Component Analysis (PCA)

reduces dimensionality effectively but may lose

important information, while Naive Bayes is efficient

but struggles with correlated features due to its

assumption of independence [61-64].

Review of Machine Learning Algorithm in Medical Health

37

Table 2. summarizing the strengths and weaknesses of machine learning algorithms in medical health, along with references for each
aspect [61-64].

ASPECT STRENGTHS WEAKNESSES REF

Decision

Trees

- Simple to understand and interpret.

- Useful for classification tasks with

clear decision rules.

- Prone to overfitting, especially with

complex data.

- Can be biased towards features with more

levels.

[25]

Random

Forest

- Reduces overfitting by averaging

multiple decision trees.

- Handles large datasets with higher

accuracy.

- Computationally intensive.

- Model can become complex and less

interpretable.

[26]

Support

Vector

Machines

(SVM)

- Effective in high-dimensional

spaces.

- Works well for classification

problems with clear margins.

- Memory and computationally expensive.

- Difficult to interpret results and tune

hyperparameters.

[27]

Neural

Networks

(ANNs)

- Capable of capturing complex

patterns in data.

- Suitable for various types of data

including images and texts.

- Requires large amounts of data and

computational resources.

- Can be seen as a "black box" with poor

interpretability.

[28]

K-Nearest

Neighbors

(KNN)

- Simple to implement and

understand.

- Flexible and adaptable to different

types of data.

- Computationally expensive with large

datasets.

- Sensitive to irrelevant features and the

choice of 'k'.

[29]

Logistic

Regression

- Provides probabilistic outputs and is

easy to interpret.

- Computationally efficient for binary

classification.

- Assumes a linear relationship between

features and the log odds of the outcome.

- Limited to binary classification without

extensions.

[30]

Gradient

Boosting

Machines

(GBMs)

- Provides high prediction accuracy.

- Can handle various types of data and

feature interactions.

- Prone to overfitting if not tuned properly.

- Computationally expensive and complex to

implement.

[31]

Principal

Component

Analysis

(PCA)

- Reduces dimensionality while

retaining most variance in data.

- Simplifies models and speeds up

computation.

- May discard useful information.

- Difficult to interpret principal components.

[32]

Naive Bayes - Simple and efficient for large

datasets.

- Good performance with small to

moderate-sized datasets.

- Assumes feature independence, which may

not hold true.

- Less accurate with highly correlated

features.

[33]

Z. Ghorbani et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 30-41, 2025

38

6. CONCLUSION

In conclusion, the application of machine learning

algorithms in healthcare offers significant potential

to enhance diagnostic accuracy and treatment

effectiveness. As highlighted in this review,

different algorithms come with their own strengths

and limitations. For instance, while decision trees

and ensemble methods provide interpretability and

improved accuracy through model combinations,

they can suffer from overfitting and complexity.

On the other hand, algorithms like SVM and SVR

excel in handling high-dimensional data but

require substantial computational resources.

Simpler algorithms such as KNN and logistic

regression, though effective in specific contexts,

face challenges with scalability and handling non-

linear relationships.

Moreover, unsupervised techniques like

K-Means and hierarchical grouping offer valuable

insights into data patterns without requiring labeled

datasets, but they can be sensitive to initial

conditions and computationally intensive. The

review underscores the importance of selecting the

appropriate algorithm based on the specific

characteristics of the healthcare data at hand,

whether it involves small or large datasets, linear

or non-linear relationships, or the need for

scalability and robustness. Ultimately, the

integration of these machine learning models into

healthcare systems must consider these trade-offs

to optimize patient outcomes and improve the

efficiency of medical practices.

REFERENCES

[1] Mehrpour, O., Saeedi, F., Vohra, V., Abdollahi, J.,

Shirazi, F. M., & Goss, F. (2023). The role of

decision tree and machine learning models for

outcome prediction of bupropion exposure: A

nationwide analysis of more than 14 000 patients in

the United States. Basic & Clinical Pharmacology

& Toxicology, 133(1), 98-110.

[2] Duan, H., & Mirzaei, A. (2023). Adaptive Rate

Maximization and Hierarchical Resource

Management for Underlay Spectrum Sharing

NOMA HetNets with Hybrid Power Supplies.

Mobile Networks and Applications, 1-17.

[3] Abdollahi, J. (2022, February). Identification of

medicinal plants in ardabil using deep learning:

identification of medicinal plants using deep

learning. In 2022 27th International Computer

Conference, Computer Society of Iran

(CSICC) (pp. 1-6). IEEE.

[4] Mirzaei, A., & Najafi Souha, A. (2021). Towards

optimal configuration in MEC Neural networks:

deep learning-based optimal resource allocation.

Wireless Personal Communications, 121(1), 221-

243.

[5] Abdollahi, J., Davari, N., Panahi, Y., & Gardaneh,

M. (2022). Detection of Metastatic Breast Cancer

from Whole-Slide Pathology Images Using an

Ensemble Deep-Learning Method: Detection of

Breast Cancer using Deep-Learning. Archives of

Breast Cancer, 364-376.

[6] Shahriyar, O., Moghaddam, B. N., Yousefi, D.,

Mirzaei, A., & Hoseini, F. (2025). An analysis of

the combination of feature selection and machine

learning methods for an accurate and timely

detection of lung cancer. arXiv preprint

arXiv:2501.10980.

[7] Mikaeilvand, N., Ojaroudi, M., & Ghadimi, N.

(2015). Band-Notched Small Slot Antenna Based

on Time-Domain Reflectometry Modeling for

UWB Applications. The Applied Computational

Electromagnetics Society Journal (ACES), 682-

687.

[8] Li, X., Lan, X., Mirzaei, A., & Bonab, M. J. A.

(2022). Reliability and robust resource allocation

for Cache-enabled HetNets: QoS-aware mobile

edge computing. Reliability Engineering & System

Safety, 220, 108272.

[9] Abdollahi, J., & Mahmoudi, L. (2022, February).

An Artificial Intelligence System for Detecting the

Types of the Epidemic from X-rays: Artificial

Intelligence System for Detecting the Types of the

Epidemic from X-rays. In 2022 27th International

Computer Conference, Computer Society of Iran

(CSICC) (pp. 1-6). IEEE.

[10] Somarin, A. M., Barari, M., & Zarrabi, H. (2018).

Big data based self-optimization networking in next

generation mobile networks. Wireless Personal

Communications, 101(3), 1499-1518.

[11] Amani, F., & Abdollahi, J. (2022). Using Stacking

methods based Genetic Algorithm to predict the

time between symptom onset and hospital arrival in

stroke patients and its related factors. Journal of

Biostatistics and Epidemiology, 8(1), 8-23.

[12] Jahanbakhsh Gudakahriz, S., Momtaz, V., Nouri-

Moghadam, B., Mirzaei, A., & Vajed Khiavi, M.

(2025). Link life time and energy-aware stable

routing for MANETs. International Journal of

Nonlinear Analysis and Applications.

[13] Abdollahi, J., Keshandehghan, A., Gardaneh, M.,

Panahi, Y., & Gardaneh, M. (2020). Accurate

detection of breast cancer metastasis using a hybrid

model of artificial intelligence algorithm. Archives

of Breast Cancer, 22-28.

[14] PARVAR, M. E., SOMARIN, A. M.,

TAHERNEZHAD, M. R., & ALAEI, Y. (2015).

Proposing a new method for routing improvement

in wireless ad hoc networks (optional). Fen

Bilimleri Dergisi (CFD), 36(4).

[15] Barzaki, M. A. J. Z., Abdollahi, J., Negaresh, M.,

Salimi, M., Zolfaghari, H., Mohammadi, M., ... &

Amani, F. (2023, November). Using Deep Learning

for Classification of Lung Cancer on CT Images in

Ardabil Province: Classification of Lung Cancer

using Xception. In 2023 13th International

Review of Machine Learning Algorithm in Medical Health

39

Conference on Computer and Knowledge

Engineering (ICCKE) (pp. 375-382). IEEE.

[16] Narimani, Y., Zeinali, E., & Mirzaei, A. (2022).

QoS-aware resource allocation and fault tolerant

operation in hybrid SDN using stochastic network

calculus. Physical Communication, 53, 101709.

[17] Abdollahi, J. (2023). Evaluating LeNet Algorithms

in Classification Lung Cancer from Iraq-Oncology

Teaching Hospital/National Center for Cancer

Diseases. arXiv preprint arXiv:2305.13333.

[18] Mirzaei, A. (2022). A novel approach to QoS‐aware

resource allocation in NOMA cellular HetNets

using multi‐layer optimization. Concurrency and

Computation: Practice and Experience, 34(21),

e7068.

[19] Khavandi, H., Moghadam, B. N., Abdollahi, J., &

Branch, A. (2023). Maximizing the Impact on

Social Networks using the Combination of PSO and

GA Algorithms. Future Generation in Distributed

Systems, 5, 1-13.

[20] Jahandideh, Y., & Mirzaei, A. (2021). Allocating

Duplicate Copies for IoT Data in Cloud Computing

based on Harmony Search Algorithm. IETE Journal

of Research, 1-14.

[21] Abdollahi, J., NouriMoghaddam, B., & MIRZAEI,

A. (2023). Diabetes Data Classification using Deep

Learning Approach and Feature Selection based on

Genetic.

[22] Mirzaei, A., Barari, M., & Zarrabi, H. (2019).

Efficient resource management for non-orthogonal

multiple access: A novel approach towards green

hetnets. Intelligent Data Analysis, 23(2), 425-447.

[23] Javadzadeh Barzaki, M. A., Negaresh, M.,

Abdollahi, J., Mohammadi, M., Ghobadi, H.,

Mohammadzadeh, B., & Amani, F. (2022, July).

USING DEEP LEARNING NETWORKS FOR

CLASSIFICATION OF LUNG CANCER

NODULES IN CT IMAGES. In Iranian Congress

of Radiology (Vol. 37, No. 2, pp. 34-34). Iranian

Society of Radiology.

[24] Mirzaei, A., Barari, M., & Zarrabi, H. (2021). An

Optimal Load Balanced Resource Allocation

Scheme for Heterogeneous Wireless Networks

based on Big Data Technology. arXiv preprint

arXiv:2101.02666.

[25] Abdollahi, J., Aref, S. Early Prediction of Diabetes

Using Feature Selection and Machine Learning

Algorithms. SN COMPUT. SCI. 5, 217 (2024).

https://doi.org/10.1007/s42979-023-02545-y.

[26] Mirzaei, A., & Rahimi, A. (2019). A Novel

Approach for Cluster Self-Optimization Using Big

Data Analytics. Information Systems &

Telecommunication, 50.

[27] Narimani, Y., Zeinali, E., & Mirzaei, A. (2025). A

new approach in fault tolerance in control level of

SDN. International Journal of Nonlinear Analysis

and Applications, 16(5), 69-76.

[28] Rad, K. J., & Mirzaei, A. (2022). Hierarchical

capacity management and load balancing for

HetNets using multi-layer optimisation methods.

International Journal of Ad Hoc and Ubiquitous

Computing, 41(1), 44-57.

[29] Amani, F., Abdollahi, J., & Amani, P. (2024,

February). Identify the Factors Influencing Suicide

among Ardabil city People Using Feature

Selection: Identify the Factors Influencing Suicide

among Ardabil using machine learning. In 2024

10th International Conference on Artificial

Intelligence and Robotics (QICAR) (pp. 17-23).

IEEE.

[30] Barari, M., Zarrabi, H., & Somarin, A. M. (2016).

A New Scheme for Resource Allocation in

Heterogeneous Wireless Networks based on Big

Data. Bulletin de la Société Royale des Sciences de

Liège, 85, 340-347

[31] Abdollahi, J., & Mehrpour, O. (2024, February).

Using Machine Learning Algorithms for Coronary

Artery Disease (CAD) Prediction Prediction of

Coronary Artery Disease (CAD) Using Machine

Learning Algorithms. In 2024 10th International

Conference on Artificial Intelligence and Robotics

(QICAR) (pp. 164-172). IEEE.

[32] Mirzaei, A. (2021). QoS-aware Resource

Allocation for Live Streaming in Edge-Clouds

Aided HetNets Using Stochastic Network Calculus.

[33] Javaid, M., Haleem, A., Singh, R. P., Suman, R., &

Rab, S. (2022). Significance of machine learning in

healthcare: Features, pillars and applications.

International Journal of Intelligent Networks, 3, 58-

73.

[34] NOSRATIP, M., HOSEINIP, M., SHIRMARZP,

A., SOMARINP, A. M., HOSEININIAP, N.,

BARARIP, M., & Ardebil, I. (2016). Application of

MLP and RBF Methods in Prediction of Travelling

within the city. Bulletin de la Société Royale des

Sciences de Liège, 85, 1392-1396.

[35] Habehh, H., & Gohel, S. (2021). Machine learning

in healthcare. Current genomics, 22(4), 291.

[36] Somarin, A. M., Nosrati, M., Barari, M., & Zarrabi,

H. (2016). A new Joint Radio Resource

Management scheme in heterogeneous wireless

networks based on handover. Bulletin de la Société

Royale des Sciences de Liège

[37] [19] Swain, S., Bhushan, B., Dhiman, G., &

Viriyasitavat, W. (2022). Appositeness of

optimized and reliable machine learning for

healthcare: a survey. Archives of Computational

Methods in Engineering, 29(6), 3981-4003.

[38] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei,

A. (2024). Metaheuristic and Data Mining

Algorithms-based Feature Selection Approach for

Anomaly Detection. IETE Journal of Research, 1-

15.

[39] Eckerson, W. W. (2007). Predictive analytics.

Extending the Value of Your Data Warehousing

Investment. TDWI Best Practices Report, 1, 1-36.

[40] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei,

A. (2025). Fraud Prediction in Financial Statements

through Comparative Analysis of Data Mining

https://doi.org/10.1007/s42979-023-02545-y

Z. Ghorbani et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 30-41, 2025

40

Methods. International Journal of Finance &

Managerial Accounting, 10(38), 151-166.

[41] Khanna, N. N., Maindarkar, M. A., Viswanathan,

V., Fernandes, J. F. E., Paul, S., Bhagawati, M., ...

& Suri, J. S. (2022, December). Economics of

artificial intelligence in healthcare: diagnosis vs.

treatment. In Healthcare (Vol. 10, No. 12, p. 2493).

MDPI.

[42] Nematia, Z., Mohammadia, A., Bayata, A., &

Mirzaeib, A. (2024). Predicting fraud in financial

statements using supervised methods: An analytical

comparison. International Journal of Nonlinear

Analysis and Applications, 15(8), 259-272.

[43] Mehrpour, O., Saeedi, F., Abdollahi, J.,

Amirabadizadeh, A., & Goss, F. (2023). The value

of machine learning for prognosis prediction of

diphenhydramine exposure: National analysis of

50,000 patients in the United States. Journal of

Research in Medical Sciences, 28(1), 49.

[44] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei,

A. (2024). The impact of financial ratio reduction

on supervised methods' ability to detect financial

statement fraud. Karafan Quarterly Scientific

Journal.

[45] Mathur, S., & Sutton, J. (2017). Personalized

medicine could transform healthcare. Biomedical

reports, 7(1), 3-5.

[46] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei,

A. (2024). Fraud Risk Prediction in Financial

Statements through Comparative Analysis of

Genetic Algorithm, Grey Wolf Optimization, and

Particle Swarm Optimization. Iranian Journal of

Finance, 8(1), 98-130

[47] Berner, E. S. (2007). Clinical decision support

systems (Vol. 233). New York: Springer Science+

Business Media, LLC.

[48] Nemati, Z., Mohammadi, A., Bayat, A., & Mirzaei,

A. (2023). Financial Ratios and Efficient

Classification Algorithms for Fraud Risk Detection

in Financial Statements. International Journal of

Industrial Mathematics.

[49] Swarthout, M., & Bishop, M. A. (2017). Population

health management: review of concepts and

definitions. American Journal of Health-System

Pharmacy, 74(18), 1405-1411.

[50] Nematollahi, M., Ghaffari, A., & Mirzaei, A.

(2024). Task offloading in Internet of Things based

on the improved multi-objective aquila optimizer.

Signal, Image and Video Processing, 18(1), 545-

552.

[51] De Ville, B. (2013). Decision trees. Wiley

Interdisciplinary Reviews: Computational

Statistics, 5(6), 448-455.

[52] Hozouri, A., EffatParvar, M., Yousefi, D., &

Mirzaei, A. Scheduling algorithm for bidirectional

LPT.

[53] Webb, G. I., Keogh, E., & Miikkulainen, R. (2010).

Naïve Bayes. Encyclopedia of machine learning,

15(1), 713-714.

[54] Babazadeh, Z., & Mirzaei, A. A review on methods,

ways of decrease delay duties at calculations

cloudy.

[55] Peterson, L. E. (2009). K-nearest neighbor.

Scholarpedia, 4(2), 1883.

[56] Movahhedi, R., Effatparvar, M., & Somarin, A. M.

A study on load balancing methods in cloud

computing environment.

[57] Cunningham, P., & Delany, S. J. (2021). K-nearest

neighbour classifiers-a tutorial. ACM computing

surveys (CSUR), 54(6), 1-25.

[58] Ziaeddini, A., Mohajer, A., Yousefi, D., Mirzaei,

A., & Gonglee, S. (2022). An optimized multi-layer

resource management in mobile edge computing

networks: a joint computation offloading and

caching solution. arXiv preprint arXiv:2211.15487

[59] Su, X., Yan, X., & Tsai, C. L. (2012). Linear

regression. Wiley Interdisciplinary Reviews:

Computational Statistics, 4(3), 275-294.

[60] Nokhostin, P., Mirzaei, A., & Jahanbakhsh, S.

Proposed Methods for Establishing Load Balancing

in Fog Computing: A Survey.

[61] LaValley, M. P. (2008). Logistic regression.

Circulation, 117(18), 2395-2399.

[62] Mehri, R., & Somarin, A. M. (2020). Designing an

Energy-Efficient Mechanism to Regulate the

Transmission Power Rate in Wireless Sensor

Networks. World, 9(S1), 189-194.

[63] Dietterich, T. G. (2000, June). Ensemble methods

in machine learning. In International workshop on

multiple classifier systems (pp. 1-15). Berlin,

Heidelberg: Springer Berlin Heidelberg.

[64] Mohammad Zadeh, M., & Mirzaei Somarin, A.

(2017). Attack Detection in Mobile Ad Hoc.

[65] Opitz, D., & Maclin, R. (1999). Popular ensemble

methods: An empirical study. Journal of artificial

intelligence research, 11, 169-198.

[66] Zhang, S., Madadkhani, M., Shafieezadeh, M., &

Mirzaei, A. (2019). A novel approach to optimize

power consumption in orchard WSN: Efficient

opportunistic routing. Wireless Personal

Communications, 108(3), 1611-1634.

[67] Derakhshandeh, S., & Mikaeilvand, N. (2011).

New framework for comparing information

security risk assessment methodologies. Australian

Journal of Basic and Applied Sciences, 5(9), 160-

166.

[68] Mirzaei, A., & Zandiyan, S. (2023). A Novel

Approach for Establishing Connectivity in

Partitioned Mobile Sensor Networks using

Beamforming Techniques. arXiv preprint

arXiv:2308.04797.

[69] Allahviranloo, T., & Mikaeilvand, N. (2011). Non

zero solutions of the fully fuzzy linear systems.

Appl. Comput. Math, 10(2), 271-282.

[70] Awad, M., Khanna, R., Awad, M., & Khanna, R.

(2015). Support vector regression. Efficient

learning machines: Theories, concepts, and

Review of Machine Learning Algorithm in Medical Health

41

applications for engineers and system designers,

67-80.

[71] Javid, S., & Mirzaei, A. (2021). Highly Reliable

Routing In Healthcare Systems Based on Internet of

Things

[72] Hahne, F., Huber, W., Gentleman, R., Falcon, S.,

Gentleman, R., & Carey, V. J. (2008).

Unsupervised machine learning. Bioconductor case

studies, 137-157.

[73] Nematollahi, M., Ghaffari, A., & Mirzaei, A.

(2024). Task and resource allocation in the internet

of things based on an improved version of the moth-

flame optimization algorithm. Cluster Computing,

27(2), 1775-1797.

[74] Kaur, N. K., Kaur, U., & Singh, D. (2014). K-

Medoid clustering algorithm-a review. Int. J.

Comput. Appl. Technol, 1(1), 42-45.\

[75] Navarro-Cerdán, J. R., Sánchez-Gomis, M., Pons,

P., Gálvez-Settier, S., Valverde, F., Ferrer-Albero,

A., ... & Redon, J. (2023). Towards a personalized

health care using a divisive hierarchical clustering

approach for comorbidity and the prediction of

conditioned group risks. Health Informatics

Journal, 29(4), 14604582231212494.

42

Journal of Optimization of Soft Computing (JOSC)

Vol. 3, Issue 1, pp: (42-54), Spring-2025

Journal homepage: https://sanad.iau.ir/journal/josc

Paper Type (Research paper)

Mathematical modeling for relocation of terminal facilities

in location problems

Mehdi Fazli1,* and Somayyeh Faraji Amoogin1
1 Department of Mathematics, Ardabil Branch, Islamic Azad University, Ardabil, Iran

Article Info Abstract

Article History:
Received: 2025/01/07

Revised: 2025/03/17

Accepted: 2025/04/12

DOI:

 The main goal of terminal facility layout is to place parking lots, areas

and different units within predefined limits in such a way as to

minimize the cost of moving passengers and employees. Especially in

‘large-scale terminals containing several different specialized

departments, it is important for the efficiency of the terminal that the

interaction units are located close together. Today, meta-heuristic

algorithms are often used to solve optimization problems such as

facility layout. Organized using three meta-heuristic algorithms which

are Migratory Bird Optimization (MBO), Taboo Search (TS) and

Simulated Annealing (SA), the results were compared with the existing

parking scheme. As a result, the MBO and SA meta-heuristic

algorithms have provided similar best results, which improve the

efficiency of the existing parking scheme by approximately 58%.’.

Keywords:

Simulated Annealing,

Migratory Bird

Optimization, Terminal

Facilities, Optimization,

Taboo Search

*Corresponding Author’s Email
Address:

mehdi.fazli.s@gmail.com

1. Introduction

The terminal facility arrangement problem has

received less attention than other issues in the

literature because many perspectives of

customer choice cannot be controlled by

transportation directors ‘[1] and demand is

highly ambiguous in this area [2]. Therefore,

more than presenting the complicacy of the

methods used to examine the issue of terminal

deployment, determining the subject solving

method, preparing appropriate data and

obtaining optimal data are other important

points to achieve optimal deployment. The

issue of arranging terminal facilities is an NP-

hard problem in terms of mathematical

calculations [3,4]. There are various methods

to solve the facility design problem in this

field, whether it is a one-criteria or multi-

criteria problem. One of them is the quadratic

allocation problem (QAP) if it considers

approximately equal regions for each section

and different locations [5]. Next are

approximate and heuristic processes that are

effective in solving multiple design problems

simultaneously [6]. Another study is mixed

programming (MP), which uses a general

distance-based aim function to design facilities

for segments of unequal or equal area [8]. The

facility allocation problem is defined by

managers as placing a predestined number of

possibilities in possible neighborhoods and

sizes [9]. Lee and Lee assumed different

possibilities in nearby areas to amend the

efficiency of facilities in a border area [10].

Shayan and Chitilapili assumed the issue of

facility allocation as an optimization issue.

M. Fazli et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 42-54, 2025

43

They tried to achieve the optimal arrangement

of facilities by considering the interactions

between facilities and material handling costs

[11]. In the research of recent years, methods

based on technological innovation and

crowded intelligence have been used to

optimally solve facility allocation problems.

Shahin and Turkabi developed a new hybrid

meta-heuristic technique for solving multiple

instrument design problems based on the

simulated annealing (SA) method and based

by tabu list [12]. By integrating the honey bee

(BA) technique, Cheng and Lin obtained a

hybrid method for multi-criteria facility design

problems. Their methods had global search

capability with local research benefits of

Particle Swarm Optimization (PSO) at the

same time [13]. Using the Ant Colony (ACO)

method, Lu et al presented a new model for

designing the layout of emergency medical

facilities in the city [14]. Eiler used the ACO

to locate labs, radiology units, and hospital

polyclinics specifically for applicants to

minimize running costs. Huynh et al. reviewed

the cost estimate of the laboratory. In their

research, they operated Automatic Integrated

Moving Average (ARIMA) to appraise the

number of laboratory applicants. GIS is also

used to show the running reality or situation for

the distribution of applicants and laboratory

costs [16]. Aydin and Fogarty designed a new

technique in which SA evolutionary method

was applied to solve the classical clinic

planning problem and the optimal location

problem of disabled hospital facilities [17].

Kaveh and Sharfi used the Search Engine

Optimization (CSS) technique, which is based

on the interaction among charged particles, to

solve the problem of facility allocation in

distribution network management [18]. A

special coordination search method is

presented by Kaveh et al. To find the location

of the optimal tool in a given problem [19].

Chan et al perused the alteration measure of

fine-tuning genetic technique and the neighbor

function of the SA method to solve the

problem of locating specific facilities. They

used changeable change functions instead of

fixed change function or accidentally selected

genes and increased the efficiency of the

technique to an acceptable extent [20]’.

‘Yang et al. modeled the efficiency of

several meta-heuristic techniques in terms of

theoretical methods. Their problem is

considered as a p-median problem for base

station routing. As mentioned in the text

above, several researches have been done in

research activities on the problems of

allocation of different possibilities, there are

only specific studies on the problems related to

the allocation of different terminal locations.

The purpose of this study is to create a specific

facility design for the terminals in order to

minimize the overall costs of the system. The

cost of moving travel applicants can be

reduced by minimizing travel between

different establishments. The optimal

arrangement problem of our terminal facilities

is to investigate the best possible arrangement

of different parts in a hypothetical range. So

that the distance between the parts that are

logically connected to each other is reduced. In

this regard, we created a mathematical method

for the optimal location of different parts of the

terminal with the lowest possible cost.

Different alternative techniques of applied

strategies were created and the most possible

and best option was used. As a new paper, the

simulated annealing (SA) optimization

technique is used for the first time to solve the

problem of assigning facilities to a terminal.

Local search is used in SA method. Aiming to

measure the performance of the SA technique

in real-world problems, the SA results are

measured with effects derived from the Tabu

Search (TS) and MBO techniques in the given

problem. The MBO technique was chosen due

to its simplicity and good application in

finding reasonable points. The TS technique

avoids local optimization and has a more

general search. The results of the assignment

of terminal components showed that the MBO

technique shows an acceptable performance

for solving the problem of assigning

components of a single terminal. Also, the rest

of the article is organized as follows. The

definition of the problem of assigning the

components of a terminal and the statistical

information of this problem are presented in

Mathematical modeling for relocation of terminal facilities in location problems

44

Section 2. The meta-heuristic techniques of

TS, SA and MBO are detailed in Section 3. In

the next section, we will solve the problem and

in section 5, the calculation results are

described. In Section 6’, the paper ends with a

conclusion and discussion.

2. Model

The ‘design and layout of office facilities

should include all necessary requirements such

as entities, mathematical modeling, difficulty

of movement, vertical movement and

arrangement of sections within the pre-defined

limits by Illery [15], in a way that takes into

account the distance between different

components and takes care of the customer's

demand. In order to achieve the efficient and

optimal positioning of departments in this

matter, the distance and the number of

guidelines for the distance between different

departments should be considered’, which

depends on the distance traveled between the

components. The distance between two points

determines the connection coefficient, and the

parts with high traffic should be placed next to

each other, and the parts with the lowest

density can be far from each other. We

investigated and modeled these factors to

reduce the target performance and overall

system cost.

 1- ‘multi-station interaction, which

depends on the number of passengers moving

between two stations, should be considered so

that stations with higher traffic are closer to

stations that are quieter.

 2- The number of customers walking to

each station was calculated in such a way that

the stations with more customers are closer to

the main entrance of the customer stations.

 3- The final transportation cost was

calculated directly based on the degree of

travel difficulty, distance, travel frequency,

and basic travel cost, and therefore, changing

each of these variables caused a change in the

transportation cost.

 4- The final acceptable response of the

system’ is obtained by performing simulations

with the aim of improving one or a number of

variables of the problem.

To solve this position allocation problem, we

form a special objective function. While

paying attention to the physical dimensions of

the terminal, the number of kiosks is

proportional to the required area, and the

average daily data of a season is considered. In

the special terminal system, the number of

customers and the number of guides is

specified.

The physical structure of the terminal shown in

Figure 1 includes three blocks, thirty-one

applicable parking areas with an area of 800

square meters, and a terminal entrance. There

are twenty-six zones of different sizes in the

terminal.

Fig. 1. Physical structure of the terminal.

The main ‘structure of the terminal consists of

several blocks, a parking lot with a defined

area and a main terminal entrance. So, there

are several parts of different sizes in the

terminal. The size and distance of the main

entrance of the terminal to the areas to be

located are given in Table 1’.

According to the assumptions explained in the

text, Table No. 1 is presented based on the

entities of the problem and the objective

function of the project is expressed in the form

of a special equation.

min⁡(∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=0 + ∑ ∑ 𝑞𝑗𝑘𝑠𝑗𝑘)

𝑛
𝑘=0

𝑚
𝑗=0 (1)

In this ‘formula, m is the number of parking

spaces, n is the number of zones where the

parking lots are located, xi is the distance

between the possible zones and the main

entrance of the terminal, yi is the number of

weekly customers in the parking lot. located up

to the ith place. , 𝑞𝑗𝑘 is the number of

customers from the parking lot who were sent

M. Fazli et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 42-54, 2025

45

to the location j to the parking lot that is placed

in the return range. 𝑠𝑗𝑘 is the distance between

region j and return. The 𝑞𝑗𝑘 matrix can be

measured as a principal matrix in QAP’ topics.

This matrix consists of different service

values, which is the number of trips inside the

terminal.

Table 1

The size of the areas and the distance to

the terminal entrance

Area Code Distance to the

station

Size

0 20 900
1 20 900
2 30 900
3 30 900

4 70 900
5 70 900
6 80 900
7 80 900
8 120 900
9 120 900
10 130 900
11 130 900

12 170 900
13 170 900
14 180 900
15 180 900
16 220 900
17 230 900
18 230 900
19 230 900

20 250 900
21 260 900
22 260 900
23 250 900
24 270 900
25 280 900
26 280 900
27 270 900
28 320 900

29 330 900
30 330 900
31 320 900

Our problem had two obvious limitations.

First, the terminal facility allocation should

take into account overall system costs related

to customer handling and congestion vehicle

handling, ‘but we did not consider the number

of vehicles because reliable information was

hard to come by. Second, the terminals were

not considered by the staff, because their

movement directly depends on the needs of the

primary’ travel establishments.

3. Methods
3.1 The ‘MBO migratory bird
optimization technique
The ‘MBO migratory bird optimization
technique for solving problems was
investigated by Duman et al. in 2012 [22].
The MBO technique is inspired by the V
formation to optimally use the energy of
migratory birds in flight. This technique is
often designed for discrete problems and
has been implemented and investigated on
QAP problems that are based on actual-
world’ questions.
The most ‘optimal method of migration for

migratory birds is the V formation so that they

can travel longer distances without getting

tired. It is clear that in this technique the main

instinct of this formation is to save the total

energy. The commander bird is the member

that consumes the maximum energy in the V

organization. The rest of the members can fly

for a longer time due to the wind energy

generated by the movement of the bird's wings

in front of them.

The ‘MBO technique is used in many problems

to solve many cases such as the flow storage

problem ‘[23-28]’, also in the backpack

problem [33], or in the credit card fraud

detection problem [29] and in the case of the

traveling salesman [31,32], two-way partitions

are used [33], this technique is also used to

balance the U-shaped robotic assembly line

[34]’.

The ‘MBO method and algorithm starts with

the initial answers that are randomly generated

and then tries to improve the obtained answers

at each step. The permutation, insertion and

inversion process is used to generate candidate

solutions for neighbors in order to improve

existing paths. The resulting candidate close

responses are then compared to the response

the technique is looking for. Each current

answer is checked against the best adjacent

answer. If the adjacent answer is better than the

running answer, the neighbor's answer is

replaced with the running answer.

Mathematical modeling for relocation of terminal facilities in location problems

46

Furthermore, leader displacement is performed

at defined times to provide optimal responses

to both sides of the population. The MBO’

technique and algorithm include generation of

relevant initial community, neighbor sharing

operation, appropriate response descendant

and leader displacement steps.

3.1.1. Generation a main solution
 The ‘MBO technique and algorithm

examines the initial answers that are randomly

selected and tries to optimize the current

solution. One of the candidate birds is chosen

as the commander bird and the other birds are

resting on the left and right side of the

commander bird. Therefore, the initial

population is marked as described in the

method. where the primary congregation of

each bird’ represents an initial response.

3.1.2. Generation an acceptable answer
 In the ‘MBO technique, an inversion process

is used to generate input points for the

operation of searching for the appropriate

position. In this particular technique, candidate

neighboring solutions are obtained completely

randomly from the current solution by

swapping two selected points. The number of

potential suitable answers for the front bird and

the number of optimal answers for the

candidate bird are different according to the

process of the MBO technique. The number of

optimal answers is obtained from equation (2)

- (4) below [32]’.

𝑚 ≥ 3; ⁡⁡𝑚 = {3,5,7,9, … }; 𝑘
∈ 𝑁+

(2)

1 ≤ 𝑞 ≤
𝑚−1

2
;𝑞 ∈ 𝑁+ (3)

𝑚 − 𝑞 = 𝑟 (4)

where ‘m is the number of neighboring

answers of the front bird, r is the number of

neighboring answers of other birds, besides

for the front bird, q’ is the number of

neighboring points.

A sample of optimal neighbor answer

generation by the permutation process is

shown in Figure 2 [32].

3.1.3. Neighbor subscription operation

 In the ‘MBO technique, the neighbor

sharing operation and process is the special

feature of this method that makes the method

stand out from similar meta-heuristic

techniques. This special neighborhood feature

ensures the interaction of all members of the

bird flock. The front bird neighbor responses

are shared on the left and right sides of the

rodents. Neighboring responses of other

members are shared only for themselves.

According to the corresponding equation (2),

m produces a neighboring solution for the front

member. These available answers are

measured based on the target performance of

the system and descend from the best answer

to the worst. The fit point is measured by the

running response of the front member. If the

neighboring point is better than the running

answer, the neighboring answer takes its place.

Solutions q the remaining point is moved to the

left bird of the front member. After this

operation, the remaining point responses (if

such a neighborhood exists)’ are discarded.

The neighborhood responses for the left

member of the front point are substituted and

the p responses from the front point are added.

These q + r responses are measured and sorted

from the best member to the least favorable

member. The best answer of each point's

‘neighbor is compared with the existing answer

of this bird. If the neighboring point's answer

is better than the current answer, the

neighboring answer’ of that point replaces the

existing answer.

 Swap

1 4 0 2 5 3 2 4 0 1 5 3

 Fig. 2. Neighbor solution generation.

The ‘remaining q responses are passed to the

next bird and other neighboring responses are

removed. This action is also performed on the

other side or the right side of the group of

birds. Neighborhood subscriptions run until

the end of the bird collection’.

3.1.4. Replacing the leader bird
 In the ‘MBO algorithm, a flap parameter

(f) is used to keep indi- viduals in the same

M. Fazli et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 42-54, 2025

47

sequence for a certain period of time. Then ,

lea- der replace processing is applied. First

replacement is applied to the left side of the

flock. While the leader is sent behind the left

side of the flock, another bird that follows the

leader is replaced by the leader. Thus, a new

sequence is created and parameter m is reset.

The next replacement is applied to the right

side of the flock. This process is continued

until the algorithm is terminated. Leader

replacement process is shown in Fig . 3’ .

Fig. 3. The leader replacement.

 In Algorithm a, the pseudocode of the

MBO method is presented as follows:

Algorithm a. algorithm MBO
Create a random initial set

repetition

repetition

‘m Create a neighbor point for the leader member

Create neighbors of r for the other answer

Compare the best value of q neighbors with the

answer of the posterior member

if (best neighbor answer < current answer value)’

Current answer = Neighborhood answer

up to the input amount

Replace the leader member

until termination

Return the best answer in the set

3.2. Taboo search technique

 For use in practical optimization problems,

the TS evolutionary technique was first

modeled by Glover in 1988 ‘[35]. In the

research background, the TS technique has

been applied to multitude practical

optimization subjects such as the vehicle

positioning and routing problem [36] as well

as the traveling salesman project [38] or the

special flow storage subject [37]’.

 In the process related to the ‘TS technique,

an initial answer is generated and during the

operation, an attempt is made to discover the

overall optimal answer using local search

methods such as the exchange and insertion

operator. In the different memory structure of

the TS technique, we have two modes. The

structures of short-term memory and long-term

memory accept the user to choose the best

feasible move to generate the appropriate

response and avoid reaching taboo responses.

In this method, the TS technique eludes local

optimization and seeks the global optimal

solution. When the desired amount is attained,

the specified taboo is removed and the

formerly found answer can be chosen as the

new answer. During the search operation for

the best point, the optimal answer found by the

‘TS’ technique is stored in the system memory

and all the answers produced by the system are

measured with the desired answer. If there is

an answer more favorable than the maximum

answer, the overall system memory is

updated’.

 In Algorithm b, the pseudocode of the
TS method is presented as follows:

 Algorithm b. algorithm TS
Generate the initial answer randomly. This answer

as Choose the current answer and the best optimal

answer.

 repetition

 Discover neighboring optimal answers using local

search techniques.

Choose the answer that is a non-taboo neighbor.

 Break the norms, even if it is taboo.

If the resulting answer is better than the existing

answer, select the new answer as taboo

If the new answer is better than the best answer, set

the new answer as the best optimal answer until

termination’

3.3. Simulated annealing technique

To solve the combined and specific problems,

the SA technique was investigated by

Kirkpatrick et al. [39]. In the ‘SA technique, it

is used to find the optimal solution by avoiding

local answers for functions with manifold

Mathematical modeling for relocation of terminal facilities in location problems

48

variables. The reason for the name of this

technique is that it is an example of the

complete arrangement of atoms and the

minimization of the potential energy of the

system when cooling solids. The method of

heating a solid body to its melting point and

then slowly cooling it to a complete network

structure is known as annealing process’.

The ‘simulated annealing technique is

performed in three specific steps: heating the

desired object or material to a certain degree

(heating), maintaining that degree for a certain

period of time (waiting) and controlled and

gradual reduction of temperature (cooling). In

the heating process, the particles of solid

matter slowly turn into liquid, and when they

are properly and gradually cooled, crystalline

particles with a completely regular structure’

are formed.

The structure of this problem and the practical

annealing operation are based on the Monte

Carlo technique by Metropolis et al. [41]. In

the assumed degree of T, the amount of energy

of the system is determined based on the

following relationship.

𝑄(𝐸) = 𝑒−𝐸 𝑀𝑇⁄ (5)

In this formula, ‘M is Boltzmann's constant

and E is the energy of the device.

In case of fluctuations in the overall state of the

system, the new power of the system is

calculated based on the metropolitan

technique. The overall stability of a substance

with energy E1 is physically created by the

displacement of a randomly selected small

member, and the amount of energy E2 is

replaced by another state. If the amount of

energy decreases (DE = (E2-E1) < 0), the

system will change to this new format. If the

energy of the system increases (DE > 0), we

measure in the new format whether to replace

the new energy value E1 according to equation

(6) or not. A uniform number is generated in a

given interval (ɤe [0,1])’.

𝛾 ≤ 𝑒𝐸∆ 𝑇⁄ (6)
In this sense, ‘DE is the distinction in several

energy levels of different states of matter.

These selection criteria are known as basic

system processes. Also, based on equation (5),

for all energy states in different states, Q (E)’

converges to the number 1. It is possible that

the system has a high energy level even at low

temperatures.

The ‘simulated annealing technique has a

favorable application in vehicle routing [44-

46]’. Also, it has obtained good results in

different fields, including the selection of

specific features of equipment [47], the

traveling salesman problem [45], facility

allocation problems [46] and workshop

scheduling [48].

In Algorithm c, the pseudocode of the SA

method is presented as follows:

Algorithm c. algorithm SA

 Randomly generate the initial answer Si
 repetition
 Create a neighboring point answer Sn
 If (new Sn responds better than Si)
 Set Sn as the optimal answer
 otherwise (random (0,1) < e∆E/T)
 Set Sn as the available answer
 Update T
 until termination

4. Application of meta-heuristics in the

issue of terminal facility allocation

 We deal with a discrete problem in this

research. ‘Algorithms used in this article are

designed and implemented for discrete

problems. In this case, there is no fundamental

change in the structure of methods for the

process of allocating terminal facilities. To

solve this problem, the parking lot codes are

randomly arranged. The amount in the array is

the parking number. A sample of the layout of

this parking lot is shown in Figure 4’.

In ‘Figure 2, parking lot number 3 is located in

area 1. After placing all the parking spaces in

the available areas, the appropriateness of the

answer is evaluated according to function (1).

These answers are checked by considering the

area of the area where the parking lots are

located, the proximity to the main entrance of

the terminal, the number of customers to the

parking lot, customer consultation between the

parking lots and the distance between the

parking’ lots.

M. Fazli et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 42-54, 2025

49

 Area No

1 2 3 4 5 6 7 8 9 10 32

3 1 5 2 4 6 10 8 7 9 … 14

station No

Fig. 4. Permutation coding for an answer

‘Example. Suppose that four different stations

(1, 2, 3, 4) are located in five specific regions.

Tables 2-4’ show the number of station

customers, recommendations of inter-station

customers, areas to be deployed and main

terminal entry time intervals.

 In ‘Table 2, the second station is shown as

three separate station plots because it has three

times the area to be located. The number of

customers in Table 2 shows the variable y in

relation (1)’.

 In ‘table number 3, columns 2 and 3 show

the same parts of the station (2) and should be

placed in the adjacent area. In this case, a very

large number of consultations are done for the

applicants (600). Table 3 shows the matrix z in

relation (1)’.

 According to the sample answer, station

‘5, 3, 1, 2 and 4 are located in different regions

1, 2, 3, 4 and 5’ respectively.

 'Table 5 shows matrix t in the Eq (1)’. A

sample answer is as follows.

5 3 1 2 4

5. Variable settings

In order to reach the best possible solution

and cover all aspects in the issue of assigning

terminal facilities, we perform parameter

settings for all methods.

Table 2

The number of customers who come

to the station.

Parking No

(Name)

Number of

applicant (y)

Required size

(m2)

(A) 1 14,609 900

(B) 2 55,406 2700

(B) 3

(C) 4 27,421 900

(D) 5 10,684 900

Table 3

The number of consultation

clients between stations

 station sending consultations

 No 1 2 3 4 5

station

accepting

consultations

1 0 85 85 25 96

 2 14 0 500 50 41

 3 14 500 0 50 41

 4 40 9 9 0 63

 5 33 4 4 5 0

Table 4

Table 5

Distance between terminal

areas

 1 2 3 4 5

1 0 15 20 20 30

2 15 0 20 20 30

3 20 20 0 15 20

4 20 20 15 0 20

5 30 30 20 20 0

In the parameter settings, the meta-heuristic

techniques of this research are implemented 30

times and separately from each other, and the

variables are selected according to the

efficiency of the best effects.

5.1. Setting the variables of the MBO

technique
In the MBO technique, several variables are

checked, including: These variables are,

population, neighborhood, and subscription,

shake.

Table 6 presents the population parameters

with values of 71, 61, 51 and 41. Input,

Distance to the entrance of the station and

size of the area

Area No Size Distance to the

entrance (x)

1 900 15

2 900 15

3 900 25

4 900 25

5 900 35

Mathematical modeling for relocation of terminal facilities in location problems

50

neighbor, and share variables are set to 30, 13,

and 1, respectively. As you can see in Table 6,

the best mean value in the population = 71 is

obtained. It can also be seen in Table 7 that the

best mean value is obtained in input =30’.

 ‘Table 7 evaluates the input parameters

with values of 60, 50, 40 and 30. The

neighborhood, subscription and population

parameters are fixed at 1, 13 and 71,

respectively.

 In Table 8, the neighborhood variables

are evaluated with values of 10, 8, 6 and 4.

Sharing, shaking, and population parameters

are fixed at 1, 30, and 71, respectively.

 Based on the performance of MBO

technique, the minimum value of the

neighboring variable can be attributed to the

number 3. According to equation (3), if m = 3,

the sharing variable (q) can only be 1. So, the

sharing variable does not need to be checked

and we set its size to 1.

According to the tables obtained from the

analysis of variables and data, the best data of

the MBO technique are given in Table No. 9’.

5.2. TS variable setting

 'Three different variables are investigated

in the TS technique. These numbers and

parameters include the length of the taboo, the

long-term penalty, and the long-term penalty’.

Table 6

Variable setting of population.

Fixed measures Population
Value

Fitness
Average

Parameter Value
Input 30 41 10347907,36

Neighbor 13 51 10381693,10

Share 1 61 10340936,30

 71 10290422,95

Table 7

Variable setting of flap.

Fixed measure Flap
Value

Fitness
Average

Parameter Value
Population 71 30 10237226,00

Neighbor 13 40 10276514,80

Share 1 50 10302385,16

 60 10256843,93

Table 8
Neighborhood variable setting
Fixed measures Neighbor

Value
Fitness
Average

Measure Value
Population 71 4 10224283,63

Input 30 6 10275433,16

Share 1 8 10305913,26

 10 10269533,46

Table 9

The best data for MBO.

Measurers Value

Population 71

Input 30

Neighbor 13

Share 1

Table 10

 In ‘Table 10, the taboo length data with
values of 50, 50, 30 and 20 are tested and
evaluated. Long-term fine and long-term
data are fixed at 110 and 10 by definition. As
you can see from the data in Table 10, the
best value of the process is obtained at tabu
length = 40.
Based on table number 11, we see that; the

long-term penalty data is evaluated at different

values of 30, 25, 20 and 15. The long-term and

taboo parameters are fixed at 110 and 40,

respectively. According to the information in

Table 11, the best process value for a long-

term penalty is = 30’.

Table 12 evaluates and evaluates different

long-term length numbers and data with 120,

110, 100 and 90 test values. The data of taboo

length and long-term penalty are fixed at

constant values of 30 and 40, respectively. As

shown in Table 12, the best mean value is

obtained in the long run = 90’.

Variabl setting of tabu length.

Fixed measure Tabu
length
Value

Fitness
Average

Measure Value
Penalizing
long term

71 20 11324842,17

 30 11162677,17

long term
length

110 40 11000656,80

 50 11293773,77

M. Fazli et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 42-54, 2025

51

 The best data related to the TS technique

according to the observations and results

obtained are given in Table No. 13.
Table 11

Measure setting of penalizing long term.

Fixed Measure Penalizing

long term

Fitness

Measure Value Value Average

tabu

length

40 15 11163603,20

 20 11391634,70

long term

length

110 25 11268883,43

 30 11133662,73

Table 12

Measure setting of long term length.

Fixed measure s long term

length

Fitness

Measure Value Value Average

tabu length 40 90 10979242,50

 100 10991153,00

long term

length

30 110 11203683,33

 120 11203941,57

Table 13

Best measures for the TS.

Measures

Value

tabu length 40

penalizing long term 30

long term length 90

6. Practical results
 Considering that the problem of allocation

of terminal facilities is a special problem, then

the effects of this problem cannot be compared

with the effects of standard problems in similar

literature. However, this issue is not only

solved by ‘MBO but also by TS and SA

methods to evaluate performance efficiency.

Tests are performed with an Intel (R) Core

(TM) i5-3330 @ 3.00 GHz processor, 1 GB of

RAM and Ubuntu 14.04 (64-bit) Linux

operating system. All techniques and

algorithms are coded with QT Creator 3.1.1

gcc compiler and C++ language. For each

technique, the algorithms are run 30 times

separately to obtain the overall results. Each

test runs for 120 seconds. Depending on the

data settings, 120 seconds seems sufficient for

both techniques. Parking maps obtained from

tests, TS, SA and MBO’ and it is given in table

number 14.

According to the observations and parameters

of Table No. 14, the best effect obtained from

the SA algorithm is equal to 10142858, which

is about 1.2% worse than the MBO and SA

techniques. For system design and current

terminal design, the best results of MBO and

SA techniques and their algorithms are given

in Table 15’.

Based on the data obtained from ‘Table 15,

parking lots 0-3 are located on the 0th floor of

Z-Block. Also with the number of

consultations, people seem to pour into the

lounge from every terminal station..

Considering the number of parking spaces of

the stations and the distance to the main hall, it

seems logical that the halls should be placed on

the 0th floor of the block. Stations 6 and 7 are

located on the 0th stage without blocks,

parking lots 13 and 14 are located on the 0th

bottom of Block A, and parking lots 25 and 26

are located on the 1st stage of Block X. It can

also be seen from Table No. 15, the layout of

the proposed station and the existing parking

layout are generally distinct, except for

parking lots 10 and 17. Both are located on the

1st stage of Y-Block. Also, the appropriateness

and allocation values of the proposed plan are

given in Table 15’. According to the proposal,

the allocation of the terminal layout has been

improved.

The convergence rate of ‘TS and MBO

techniques is closer to each other and faster

than SA technique. But the efficiency obtained

from the SA technique is better than the TS and

MBO’ methods according to the worst results

and the average.
Table 14

Results from MBO, SA and TS.

 Method

 MBO TS SA

Min. 10142858,0 10254993,0 10142858,0

Avg. 10236622,3 11054517,2 10158826,4

Worst 0652954,0 11872704,0 10331548,0

Mathematical modeling for relocation of terminal facilities in location problems

52

Table 15

Existing and proposed station design

Block Floor Proposed

station Layout

Existing

station

Layout

X-Block 0 13, 15, 29, 9 29, 23, 31, 22

 1 26, 26, 5, 13 8, 16, 25, 31

Y-Block 0 4, 6, 8, 12 15, 18, 18, 28

 1 10, 28, 17, 24 10, 11, 19, 21

Z-Block -1 19, 17, 31, 23 12, 21, 4, 5

 0 2, 0, 4, 1 6, 7, 8, 27

 1 18, 9, 16, 25 13, 15, 25, 26

 2 21, 28, 31, 21 0, 1, 4, 3

Fitness Value 10, 141, 847 17, 423, 012

According to the results obtained from all three

meta-heuristic techniques that are analyzed

and tested practically. To check whether there

is a significant difference between the

techniques used, we use the Wilcoxon

criterion. There is no important difference

between the two measured techniques under

the assumption of ‘H0. There is a fundamental

difference between these two techniques

measured by the alternative hypothesis H1.

The acceptable value of H0 hypothesis is set at

95%. In this way, if the distance of each

technique is less than 5% (a = 0.05), there is

not much distance between two techniques.

The results of the techniques are recorded in

Table No. 16 at a significance level of 5%’.

Table 16

Wilcoxon test results.

p-values

TS&MBO SA&MBO TS &SA

0.001 0,148 0.001

According to the results obtained in table
number 16, there is no important difference
between ‘SA and MBO techniques (0.148>
0.05). According to the results obtained
from the tests, it can be seen that there is an
acceptable difference between TS and MBO
techniques with SA and TS techniques
(<0.05)’.

7. Conclusion and discussion

In the end, we will examine the optimization

issues of urban life that we can face in many

areas of our real life. In these cases, ‘meta-

heuristic techniques are used to solve practical

optimization subjects. Placing different bodies

in appropriate areas in the issue of facility

allocation increases operational efficiency by

improving system costs, implementation and

process time. The location of the stations

inside the terminal plays an important role in

determining the commuting time of customers

and terminal employee. The transfer time of a

customer is to visit a station without an

intermediary for service or to receive service

from a station to a secondary station. The

lengthening of these transfer times leads to a

longer stay in the terminal and a decrease in the

terminal's performance. Therefore, the precise

designation of these walking stations ensures

the optimal use of terminal electricity and

minimizes unnecessary separation between

customers, employees and tourists, and

increases the productivity of the terminal. In

this study, we used TS, SA and MBO meta-

algorithms to allocate station space for a real-

scale terminal. Based on the results obtained

from the experiences, the success of TS, SA

and MBO techniques in facility allocation

problems is tested on a transportation problem

and it is observed that the total cost of SA and

MBO’ techniques is very better than TS

technique. ‘When we compare the fit value

generated from the applied results with the fit

value available in a system, we see that our

method performs well. As a result, technology

can be used to allocate terminal stations. For

future work, some constraints and assumptions

can be added to the problem. As if a customer

has several turns at several stations or some

passengers need support to move. The re-

completion operation of each section can also

be considered’.
References

[1] J. Tompkins, J. White, W. Bozer, J. Tanchoco,

Facilities Planning, John Wiley & Sons, New York,

USA, 2003.

[2] Sarma, Sisira, Demand for outpatient healthcare,

Appl. Health Econ. Health Policy 7 (4) (2009) 265–277.

[3] R.S. Amaral, A new lower bound for the single row

facility layout problem, Discrete Appl. Math. 157

(2009) 183–190

[4] M. Mohammadi, K. Forghani, A novel approach for

considering layout problem in cellular manufacturing

systems with alternative processing routings and

M. Fazli et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 42-54, 2025

53

subcontracting approach, Appl. Math. Model. 38 (14)

(2014) 3624–3640.

[5] A. Barbosa-Povoa, R. Mateus, A. Novais, Optimal

two-dimensional layout of industrial facilities, Int. J.

Prod. Res. 39 (12) (2001) 2567–2593.

[6] S.P. Singh, R.R. Sharma, A review of different

approaches to the facility layout problems, Int. J. Adv.

Manuf. Technol. 30 (5–6) (2006) 425–433.

[7] B. Montreuil, A modeling framework for integrating

layout design and flow

network design, in: Proceedings of the Material

Handling Research Colloquium, 1990, pp. 43–58.

[8] T. Lacksonen, Pre-processing for static and dynamic

facility layout problems, Int. J. Prod. Res. 35 (1997)

1095–1106.

[9] F. Azadivar, J. Wang, Facility layout optimization

using simulation and genetic algorithms, Int. J. Prod.

Res. 38 (17) (2000) 4369–4383.

[10] Y.H. Lee, M.H. Lee, A shape-based block layout

approach to facility layout problems using hybrid

genetic algorithm, Comput. Ind. Eng. 42 (2) (2002) 237–

248.

[11] E. Shayan, A. Chittilappilly, Genetic algorithm for

facilities layout problems based on slicing tree structure,

Int. J. Prod. Res. 42 (2) (2002) 237–248.

[12] R. Sahin, O. Turkbey, A new hybrid heuristic

algorithm for the multi objective facility layout

problem, J. Faculty Eng. Archit. Gazi Univ. 25 (1)

(2010) 119– 130.

[13] M.Y. Cheng, L.C. Lien, A hybrid AI-based particle

bee algorithm for facility layout optimization, Eng.

Comput. 28 (1) (2012) 57–69.

[14] Q. Luo, Q. Su, J. Le, L. Lu, in: 10th International

Conference on Service Systems and Service

Management, IEEE, 2013, pp. 224–227.

[15] Y.Y. Ileri, The Importance of Layout Organization

in Hospital Management Efficiency: A Model in S.U.

Medical Faculty Hospital, Selcuk University, 2013.

[16] D.T.T. Huyen, N.T. Binh, T.M. Tuan, T.Q. Trung,

N.G. Nhu, N. Dey, L.H. Son, Analyzing trends in

hospital-cost payments of patients using ARIMA and

GIS: case study at the hanoi medical university hospital,

Vietnam, J. Med. Imaging

Health Inf. 7 (2) (2017) 421–429.

[17] M.E. Aydin, T.C. Fogarty, A distributed

evolutionary simulated annealing algorithm for

combinatorial optimisation problems, J. Heuristics 10

(3) (2004) 269–292.

[18] A. Kaveh, P. Sharafi, Charged system search

algorithm for minimax and minisum facility layout

problems, Asian J. Civ. Eng. 6 (12) (2011) 703–718.

[19] A. Kaveh, M.A.A. Shakouri, M.S. Zolfaghari, An

adapted harmony search based algorithm for facility

layout optimization, Int. J. Civ. Eng. 1 (10) (2012) 37–

42.

[20] K.Y. Chan, M.E. Aydin, T.C. Fogarty, Main effect

fine-tuning of the mutation operator and the

neighbourhood function for uncapacitated facility

location problems, Soft. Comput. 10 (11) (2006) 1075–

1090.

[21] J. Yang, M.E. Aydin, J. Zhang, C. Maple, UMTS

base station location planning: a mathematical model

and heuristic optimisation algorithms, IET Commun. 1

(5) (2007) 1007–1014.

[22] E. Duman, M. Uysal, A.F. Alkaya, Migrating birds

optimization: a new metaheuristic approach and its

performance on quadratic assignment problem, Inf. Sci.

217 (2012) 65–77.

[23] V. Tongur, E. Ülker, Migrating birds optimization

for flow shop sequencing problem, J. Comput.

Commun. 2 (04) (2014) 142.

[24] A. Sioud, C. Gagné, Enhanced migrating birds

optimization algorithm for the permutation flow shop

problem with sequence dependent setup times, Eur. J.

Oper. Res. 264 (1) (2018) 66–73.

[25] B. Zhang, Q.K. Pan, L. Gao, X.L. Zhang, H.Y.

Sang, J.Q. Li, An effective modified migrating birds

optimization for hybrid flowshop scheduling problem

with lot streaming, Appl. Soft Comput. 52 (2017) 14–

27.

[26] T. Meng, Q.K. Pan, J.Q. Li, H.Y. Sang, An

improved migrating birds optimization for an integrated

lot-streaming flow shop scheduling problem, Swarm

Evol. Comput. 38 (2018) 64–78.

[27] Q.K. Pan, Y. Dong, An improved migrating birds

optimisation for a hybrid flowshop scheduling with total

flowtime minimisation, Inf. Sci. 277 (2014) 643–655.

[28] K.Z. Gao, P.N. Suganthan, T.J. Chua, in: An

Enhanced Migrating Birds Optimization Algorithm for

No-Wait Flow Shop Scheduling Problem, IEEE, 2013,

pp. 9–13.

[29] E. Duman, I. Elikucuk, Solving credit card fraud

detection problem by the new metaheuristics migrating

birds optimization62–71, International Work-

Conference on Artificial Neural Networks, Springer,

Berlin, Heidelberg, 2013.

[30] E. Ulker, V. Tongur, Migrating birds optimization

(MBO) algorithm to solve knapsack problem, Proc.

Comput. Sci. 111 (2017) 71–76.

[31] V. Tongur, E. Ülker, The analysis of migrating

birds optimization algorithm with neighborhood

operator on traveling salesman problem, in: Intelligent

and Evolutionary Systems, Springer, Cham, 2016, pp.

227–237.

[32] V. Tongur, E. Ülker, PSO-based improved multi-

flocks migrating birds optimization (IMFMBO)

algorithm for solution of discrete problems, Soft.

Comput. 23 (14) (2019) 5469–5484.

[33] M. Hacibeyoglu, K. Alaykiran, A.M. Acilar, V.

Tongur, E. Ulker, A Comparative Analysis of

metaheuristic approaches for multidimensional two-

way number partitioning problem, Arabian J. Sci. Eng.

43 (12) (2018) 7499–7520.

[34] Z. Li, M.N. Janardhanan, A.S. Ashour, N. Dey,

Mathematical models and migrating birds optimization

for robotic U-shaped assembly line balancing problem,

Neural Comput. Appl. (2019) 1–17.

[35] F. Glover, Tabu search part I., ORSA J. Comput. 1

(3) (1989) 190–206.

Mathematical modeling for relocation of terminal facilities in location problems

54

[36] F.A.T. Montané, D.G. Roberto, A tabu search

algorithm for the vehicle routing problem with

simultaneous pick-up and delivery service, Comput.

Oper. Res. 33 (3) (2006) 595–619.

[37] J. Grabowski, W. Mieczyslaw, A very fast tabu

search algorithm for the permutation flow shop problem

with makespan criterion, Comput. Oper. Res. 31 (11)

(2004) 1891–1909.

[38] C.N. Fiechter, A parallel tabu search algorithm for

large traveling salesman problems, Discrete Appl. Math.

51 (3) (1994) 243–267.

[39] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi,

Optimization by simulated annealing, Am. Assoc. Adv.

Sci. 220 (4598) (1983) 671–680.

[40] N. Metropolis, A.W. Rosenbluth, M.N.

Rosenbluth, A.H. Teller, E. Teller, Equation of state

calculations by fast computing machines, J. Chem.

Phys. 21 (6) (1953) 1087–1092.

[41] H. Bagherlou, A. Ghaffari, A routing protocol for

vehicular ad hoc networks using simulated annealing

algorithm and neural networks, J. Supercomput. 74 (6)

(2018) 2528–2552.

[42] L. Wei, Z. Zhang, D. Zhang, S.C. Leung, A

simulated annealing algorithm for the capacitated

vehicle routing problem with two-dimensional loading

constraints, Eur. J. Oper. Res. 265 (3) (2018) 843–859.

[43] K. Karagul, Y. Sahin, E. Aydemir, A. Oral, A

simulated annealing algorithm based solution method

for a green vehicle routing problem with fuel

consumption, in: Lean and Green Supply Chain

Management, Springer, Cham, 2019, pp. 161–187.

[44] M.M. Mafarja, S. Mirjalili, Hybrid whale

optimization algorithm with simulated annealing for

feature selection, Neurocomputing 260 (2017) 302–

312.

[45] S.H. Zhan, J. Lin, Z.J. Zhang, Y.W. Zhong, List-

based simulated annealing algorithm for traveling

salesman problem, Comput. Intell. Neurosci. 2016

(2016) 8.

[46] S. Kulturel-Konak, A. Konak, A large-scale hybrid

simulated annealing algorithm for cyclic facility layout

problems, Eng. Optim. 47 (7) (2015) 963– 978.

[47] N. Shivasankaran, P.S. Kumar, K.V. Raja, Hybrid

sorting immune simulated annealing algorithm for

flexible job shop scheduling, Int. J. Comput. Intell.

Syst. 8 (3) (2015) 455–466.

[48] S. García, D. Molina, M. Lozano, F. Herrera, A

study on the use of nonparametric tests for analyzing the

evolutionary algorithms’ behaviour: a case study on the

CEC’2005 special session on real parameter

optimization, J. Heuristics 15 (6) (2009) 617.

in binary computer arithmetic, ”IEEE Computer Group

Repository, Paper R-67-85.

55

Journal of Optimization of Soft Computing (JOSC)

Vol. 3, Issue 1, pp: (55-62), Spring-2025

Journal homepage: https://sanad.iau.ir/journal/josc

Paper Type (Research paper)

Fuzzy Logic-Based Vector Control Method for Induction Motors

Gholam Reza Aboutalebi*

Energy and Environment Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

Article Info Abstract

Article History:
Received: 2025/03/15

Revised: 2025/06/08

Accepted: 2025/06/12

DOI:

 Vector control methods in induction motors based on proportional-

integral (PI) and proportional-integral-derivative (PID) controllers with

fixed gains are not effective against changes in system parameters, load

changes, temperature changes, magnetic saturation, and other

disturbances due to their strong dependence on machine parameters.

 In vector control systems, motor flux and torque control are performed

by determining the currents and spatial angles of the vectors, which are

not very accurate due to instantaneous oscillations in the load and

changes in rotor resistance. In many industrial applications, the stable

and precise performance of these controllers is challenged. To deal with

these problems, there is a need for an adaptive control system that can

dynamically adjust the controller gains. The use of fuzzy logic

controllers (FLC) due to their high flexibility, adaptability to different

operating conditions, and improved dynamic response, without the

need for a precise mathematical model of the system, can adjust of

control strategies based on linguistic rules and fuzzy sets. In this paper,

an induction motor indirect vector control method is replaced with a

fuzzy logic controller. The results of simulation and evaluation of the

method in different conditions show that the use of fuzzy control leads

to improved stability, reduced speed, and torque oscillations, reduced

system response delay, and increased control accuracy and can be a

suitable alternative to classical controllers in industrial applications in

systems requiring precise and stable performance.

Keywords:
Fuzzy logic, Speed control,

Torque control, Induction

motors, Motor performance

optimization.

*Corresponding Author’s Email
Address:

gh.r.aboutalebi@gmail.com

1. Introduction

AC motor drives require high-efficiency performance

due to their numerous industrial applications. In these

drives, the motor speed must follow the desired

reference speed trajectory with less influence from load

changes, parameter changes, and motor model

estimation errors. For this purpose, the vector control

method was proposed. In this method, the design of an

appropriate controller plays a decisive role in the drive

performance.

Unfortunately, there are problems such as high

sensitivity to machine parameters such as rotor time

constant, and the need for accurate flux measurement

and estimation in the vector control method.

1 Model Reference Adaptive Control
2 Sliding-Mode Control
3 Variable Structure Control
4 Self - tuning PI controller

The fixed-gain PI and PID controllers, which are

commonly used in speed control drives, are very

sensitive to changes in parameters and load changes, so

the parameters of these controllers must be continuously

adapted to the prevailing environmental and load

conditions. This problem can be solved to some extent

by various techniques such as Model Reference

Adaptive Control (MRAC)1[1], Sliding Mode Control

(SMC)2[2], Variable Structure Control (VSC)3[3], Self-

Tuning PI Controllers4[4] and some other methods.

Controller design in all the above methods requires a

more accurate mathematical model of the system, but

determining the exact mathematical model of the system

Gh. R. Aboutalebi / Journal of Optimization of Soft Computing (JOSC), 3(1): 55-62, 2025

56

is often difficult due to reasons such as uncertain load

changes and uncertain changes in parameters due to

conditions such as temperature changes and system

disturbances [5, 6].

To overcome these problems, fuzzy logic controllers

(FLC)5 can be used [7-10].

In a general comparison between classical PI and PID

controllers and adapted fuzzy controllers, the following

advantages are observed [11, 12]:

1. These controllers do not require an accurate

mathematical model of the system.

2. They are easy to implement in systems with

nonlinear and complex behavior.

3. The structure of this type of controllers is based

on the linguistic rules common among humans and

can be implemented through “IF-Then” statements,

which itself expresses the proximity of this logic to

life in human societies.

In order to achieve better performance, the indirect

vector control method is simulated with the help of

a fuzzy controller, and its results are presented.

2. Indirect Vector Control of Induction Motors

The stages of vector control at induction motor by

indirect method and by precise tracking of the rotor

field are given below [13, 14]:

First step) Sampling of a stator and Calculating the

real value of Longer and Transverse Components

of Stator current in rotor flow Coordinates:

(1)

(2)

Second step) Calculate the amount of the rotor flux

linkage by estimated
estr

ψ , angular slip angle

frequency sl , and rotor angle position e . For

sl :

(3)

(4)

5 Fuzzy Logic Controller

And for the rotor flux linkage, we can write:

(5)

Third Step) Determine the Reference Current
*
dsi :

The speed control in this study is below the base

speed b . Therefore,
*
dsi is calculated using the

following relationship:

(6)

Where
*

r is the reference value of the rotor flux

space phasor and its nominal value can be obtained

through the steady-state model of the induction

machine in the constant torque region of the

induction machine's speed-torque curve.

Fourth Step) Determine the Reference Current :
*
qsi

The torque-producing component in an induction

motor is the reference current,
*
qsi , and can be

calculated from
*
eT as follows:

(7)

In Equation (7),
*
eT , represents the reference

electromagnetic torque, P, denotes the number of

pole pairs in the machine, and
*
qsi corresponds to

the reference value of the transverse (quadrature-

axis) component of the stator current."

To achieve
*
eT , the motor speed is initially

sampled. Then, the error between the desired

reference speed and the actual motor speed is

processed through a proportional-integral (PI)

speed controller, which generates the reference

torque
*
eT .

Fifth Step) Converting reference currents
*
dsi and

*
qsi into three-phase currents

*
ai ,

*
bi , and

*
ci

through equations (8) and (9):

(8)
























































SC
i
SB

i
SA

i

s
qsi

s
ds

i

2

3

2

3
0

2

1

2

1
1

3

2









































s
qsi

s
ds

i

eθcoseθsin

eθsineθcos
e
qsi

e
ds

i

qs

r

r

estr

m
sl i

L

R
.

L













   dtslme 

ST

iL

R

dsm

estr



1



m

r

ds
L

i

*

*




estr

e

m

r
qs

T

L

L

P
i



*

* ..
3

2




















 













*

*

*

*

cossin

sincos

e

qs

e

ds

ee

ee

s

qs

s

ds

i

i

i

i





Fuzzy Logic-Based Vector Control Method for Induction Motors

57

(9)

Sixth Step) Applying three-phase reference

currents to a current-controlled PWM inverter:

At this stage, the current error resulting from the

three-phase reference currents and the sampled

currents is applied to a hysteresis controller with a

specific hysteresis band to generate the necessary

pulses for the inverter.

The general block diagram of indirect control of an

induction motor using the FOC method based on

the above six steps with Current-controlled VSI

voltage source inverter will be as shown in Figure

(1).

In this block diagram, the speed controller is of the

PI type and its role is to keep the actual speed of

the motor equal to the reference speed in both

steady-state and transient states with good dynamic

response.

Figure 1. General block diagram of indirect vector control of an induction motor using the FOC method

The curves related to the start-up of a three-phase

squirrel cage induction motor sample without load

and at a speed lower than the rated speed are shown

in Figure (2). As can be seen, the motor speed has

reached the reference speed after approximately

1.9s. The results of the study of the dynamic

behavior with respect to changes in load torque and

reference speed are also shown in Figure (3). In this

figure, the reference speed of the running motor has

increased to 150 radians/second, which is the rated

speed of the motor. Also, after a certain period of

time, a load torque of 100 N.m has been applied to

the motor.



























































*

*

*

*

*

2

3

2

1
2

3

2

1

01

s

qs

s

ds

c

b

a

i

i

i

i

i

Gh. R. Aboutalebi / Journal of Optimization of Soft Computing (JOSC), 3(1): 55-62, 2025

58

Figure 2. The curves related to the start-up of a three-

phase squirrel cage induction motor sample without load

and at a speed lower than the rated speed

Figure 3. dynamic behavior with respect to changes in

load torque and reference speed

3. Fuzzy vector control

Fuzzy logic techniques are of significant use in

solving many problems in various sciences [15-

17]. These techniques play a particularly important

role in the control of engineering processes. Fuzzy

logic controllers (FLC) allow the setting of control

strategies based on linguistic rules and fuzzy sets,

due to their high flexibility, adaptability to different

operating conditions, and improved dynamic

response, without the need for an accurate

mathematical model of the system.

Due to the high sensitivity of the vector control

method to machine parameters such as the rotor

time constant, the need for accurate flux

measurement and estimation, etc., classical PI

controllers are not very suitable for this method.

For this reason, the controller in the vector control

method is replaced by a fuzzy PI controller.

PI controllers are used as one of the most important

controllers due to their simple structure and robust

performance. The transfer function of these

controllers is as follows:

(10)

The success of a PI controller depends on the

appropriate choice of its gains, A and B. In

practice, determining the PI gains that will provide

optimal efficiency is not a simple task and must be

derived with the help of expert experience and

based on a number of general rules.

In a speed control system, the goal is to achieve a

fast rise time with the least overshoot.

Therefore, the set of rules of the fuzzy control

system is obtained empirically and based on the

step response. Figure (4) shows a typical response

of a process to a step input.

Figure 4 A typical response of a process to a step unit

input

Around point “a”, a large control signal is needed,

so we can say: If the error between the reference

speed and the actual speed of the motor is large,

then pk should be large and ik , small.

At points “b” and “d”, the speed changes with

respect to time are large and the error between the

reference speed and the actual speed is small, so we

can write: If the speed changes with respect to time

(acceleration) are large and the speed error is small,

Then pk and ik are both small because large pk

causes large overshoot and large ik causes the

system to oscillate.

s

k
kG i

P 

Fuzzy Logic-Based Vector Control Method for Induction Motors

59

At point e, the error between the reference speed

and the actual speed is zero and the speed changes

with respect to time are also almost zero, so we

have: If the speed error is zero and the acceleration

is also zero, then pk should be small and ik , large

So that the steady-state error in the system is

reduced. A similar behavior to point “a” can also

be proposed for “c” point.

Based on the above expressions, the desired fuzzy

controller can be prepared for replacement in the

vector control method. For this purpose, one fuzzy

controller is considered for determining the value

and another fuzzy controller is considered for

determining.

The fuzzy inference system used in this paper is of

the Mamdani type. This system has features such

as its efficiency in ambiguous environments, the

use of human knowledge, and the ability to find the

optimal solution to the problem from a large

number of available solutions.

The membership functions used in these controllers

are trapezoidal and triangular, which are defined as

follows:

 (11)

In the above expressions, if b = c, the triangular

membership function will be obtained.

The methods used for combining and summing the

rules are also in accordance with the following

relation expressions:

min : And Method

max : Or Method

min : Implication

max : Aggregation

center of gravity : Defuzzification

The defuzzification method used is the center of

gravity method, which is defined as follows:

(12)

Where N is the number of fuzzy rules used and

  ikc is the membership degree of the output

for the kth rule.

Figure (5) shows the membership functions and

fuzzy rules related to the pk fuzzy controller. In

this figure, the first input of the fuzzy controller is

the error of the reference speed and the measured

speed, which is represented by “e”, and the second

input is the acceleration or change in speed with

respect to time, which is represented by “a”.

 (13)

 (14)

Figure 5. membership functions and fuzzy rules related to

the pk fuzzy controller

Figure (6) shows the membership functions and

fuzzy rules related to the ik fuzzy controller. The

inputs of this controller are the velocity error “e”

and acceleration “a” and its output is the desired

numerical value for ik according to the fuzzy rules

used.

   

   






N

k

kc

N

k

kc

i

ii

ioutput

1

1





Gh. R. Aboutalebi / Journal of Optimization of Soft Computing (JOSC), 3(1): 55-62, 2025

60

Figure 6. membership functions and fuzzy rules related to

the ik fuzzy controller

By replacing the block corresponding to the

classical controller in the conventional vector

control method with the blocks of fuzzy controllers

and the necessary sections, the fuzzy vector control

method was simulated on a motor with the same

specifications and under similar transient

conditions. The simulation results are shown in

Figures (7), (8), and (9).

Figure 7 . The curves related to the start-up of a induction

motor sample without load and at a speed lower than the

rated speed with fuzzy logic controller

Figure 8. dynamic behavior with respect to the reference

speed increase with fuzzy logic controller

Figure 9. Dynamic behavior with increasing motor load

using a fuzzy logic controller

The curves related to the changes in the ik and pk

gains and the ratio of the speed change curve are

presented in Figure (10). By observing this figure

and the previously presented fuzzy rules, the result

of applying fuzzy rules and using fuzzy controllers

can be seen.

Fuzzy Logic-Based Vector Control Method for Induction Motors

61

Figure 10.

Figure (11) presents the simultaneous response of

the induction motor starting curves using the

classical vector control method and the fuzzy

vector control method.

Figure 11.

As can be seen in Figure (11), in the fuzzy method,

the speed of the induction motor will reach the

desired reference speed in less time. Also, the

steady state error in this case is almost zero.

The rate of speed overshoot from the desired

reference speed is very small and can be reduced

further by better and more appropriate selection of

membership functions and their parameters and the

use of fuzzy rules.

However, the fuzzy vector control method is one of

the reliable application method of speed control of

induction motors, which in addition to its

simplicity increases the speed and accuracy of the

system response under variable environmental

conditions and motor parameters. Of course, the

practical implementation of this method is possible

using fast digital signal processors (DSP6).

6 Digital signal Processing

4. Specifications of the squirrel cage induction

motor used in the simulations

The specifications of the induction motor used in

the simulations are as follows:

Table 1. Specifications of the induction motor
Nominal value Parameter

50 HP (37kW) Pn

400 V Vn

50 Hz fn

1480 rpm Nn

0.08233 Ω Rs

0.724 mH Lls

0.0503 Ω R’rs

0.724 mH L,lr

27.11 mH Lm

0.37 kg.m2 J

0.02791 N.m.s f

2 (Pair of poles) P

5. Conclusion

Using the fuzzy vector control method, on the one

hand, improves the speed and accuracy of the

system's response to sudden changes in the load

torque or the applied reference speed, and on the

other hand, by using a fuzzy controller instead of a

classic controller, the high sensitivity of the control

system to changes in environmental conditions and

changes in engine parameters is reduced. So that

changing the proportional and integral gains of the

controller during system operation tries to create a

desired response in following the desired reference

speed and responding to changes in the load torque

in loads that have uncertain behavior.

The fuzzy control method in determining the

controller gains compared to fixed-gain controllers

includes other advantages such as simplicity, no

need for an accurate mathematical model of the

system, and faster response to unwanted changes in

the load characteristics and engine model.

References
[1] R. Kumar, S. Das, P. Syam, and A. K.

Chattopadhyay, “Review on model reference adaptive

system for sensorless vector control of induction motor

drives,” IET Electr Power Appl, vol. 9, no. 7, pp. 496–

511, Aug. 2015, doi: 10.1049/iet-epa.2014.0220.

[2] S. Di Gennaro, J. Rivera Dominguez, and M.

A. Meza, “Sensorless High Order Sliding Mode Control

of Induction Motors With Core Loss,” IEEE

Gh. R. Aboutalebi / Journal of Optimization of Soft Computing (JOSC), 3(1): 55-62, 2025

62

Transactions on Industrial Electronics, vol. 61, no. 6, pp.

2678–2689, Jun. 2014, doi: 10.1109/TIE.2013.2276311.

[3] V. V. Alekseev, A. P. Emel’yanov, and A. E.

Kozyaruk, “Analysis of the dynamic performance of a

variable-frequency induction motor drive using various

control structures and algorithms,” Russian Electrical

Engineering, vol. 87, no. 4, pp. 181–188, Apr. 2016, doi:

10.3103/S1068371216040027.

[4] S. Yaacob and F. A. Mohamed, “Real time self

tuning controller for induction motor based on PI

method,” in SICE ’99. Proceedings of the 38th SICE

Annual Conference. International Session Papers (IEEE

Cat. No.99TH8456), Soc. Instrum. & Control Eng, pp.

909–914. doi: 10.1109/SICE.1999.788670.

[5] F. N. Sarapulov, V. E. Frizen, E. L. Shvydkiy,

and I. A. Smol’yanov, “Mathematical Modeling of a

Linear-Induction Motor Based on Detailed Equivalent

Circuits,” Russian Electrical Engineering, vol. 89, no. 4,

pp. 270–274, Apr. 2018, doi:

10.3103/S1068371218040119.

[6] M. Konuhova, “Induction Motor Dynamics

Regimes: A Comprehensive Study of Mathematical

Models and Validation,” Applied Sciences, vol. 15, no.

3, p. 1527, Feb. 2025, doi: 10.3390/app15031527.

[7] C. W. de Silva, Intelligent Control. CRC Press,

2018. doi: 10.1201/9780203750513.

[8] Y. A. Almatheel and A. Abdelrahman, “Speed

control of DC motor using Fuzzy Logic Controller,” in

2017 International Conference on Communication,

Control, Computing and Electronics Engineering

(ICCCCEE), IEEE, Jan. 2017, pp. 1–8. doi:

10.1109/ICCCCEE.2017.7867673.

[9] L. A. Zadeh, “Fuzzy Logic,” 2009, pp. 19–49.

doi: 10.1007/978-1-0716-2628-3_234.

[10] A. Sagdatullin, “Improving Automation

Control Systems and Advantages of the New Fuzzy

Logic Approach to Object Real-Time Process

Operation,” in 2019 1st International Conference on

Control Systems, Mathematical Modelling, Automation

and Energy Efficiency (SUMMA), IEEE, Nov. 2019,

pp. 256–260. doi:

10.1109/SUMMA48161.2019.8947538.

[11] M. Masoumi, S. Hossani, F. Dehghani, and A.

Masoumi, THE CHALLENGES AND ADVANTAGES

OF FUZZY SYSTEMS APPLICATIONS A

PREPRINT. 2020. doi: 10.13140/RG.2.2.22310.96328.

[12] A. G. M. A. Aziz, A. Y. Abdelaziz, Z. M. Ali,

and A. A. Z. Diab, “A Comprehensive Examination of

Vector-Controlled Induction Motor Drive Techniques,”

Energies (Basel), vol. 16, no. 6, p. 2854, Mar. 2023, doi:

10.3390/en16062854.

[13] A. Mishra and P. Choudhary, “Speed control of

an induction motor by using indirect vector control

method,” International Journal of Emerging Technology

and Advanced Engineering, vol. 2, no. 12, pp. 144–150,

2012.

[14] G. Satyanarayana, M. Karthikeyan, R.

Mahalakshmi, and T. Vandarkuzhali, “Vector Control of

an Induction Motor for Speed Regulation,” in 2023 7th

International Conference on Computing Methodologies

and Communication (ICCMC), IEEE, Feb. 2023, pp.

1621–1625. doi:

10.1109/ICCMC56507.2023.10084248.

[15] F. Kiyoumarsi and B. Zamani, “Extending the

Lifetime of Wireless Sensor Networks Using Fuzzy

Clustering Algorithm Based on Trust Model,” Journal of

Optimization of Soft Computing (JOSC), vol. 1, no. 1,

pp. 12–22, Sep. 2023, doi:

10.82553/josc.2023.14020714783332.

[16] A. Banitalebidehkordi, “Using the fuzzy

methods to examine changes in brain lesions and

atrophy from MRI images for rapid diagnosis of MS,”

Journal of Optimization of Soft Computing (JOSC), vol.

2, no. 1, pp. 19–25, Jun. 2024, doi:

10.82553/josc.2024.140302141118861.

[17] A. Jahanbakhsh and M. Jahangiri, “Bridging

Technology and Language: Exploring Soft Computing

Solutions for Effective English Language Teaching in

Iran,”Journal of Optimization of Soft Computing

(JOSC), vol. 2, no. 3, pp. 1–6, Nov. 2024, doi:

10.82553/josc.2024.140305181128542.

63

Journal of Optimization of Soft Computing (JOSC)

Vol. 3, Issue 1, pp: (63-69), Spring-2025

Journal homepage: https://sanad.iau.ir/journal/josc

Paper Type (Research paper)

Learning Rate Optimization of U-Net Architecture Using Grasshopper

Optimization Algorithm to Enhance Accuracy in CT Image Segmentation

of COVID-19 Patients

Alireza Mehravin 1*, Mostafa Zaare 1, Reza Mortazavi2

1. School of Mathematics and Computer Science, Damghan University, Damghan, Iran.

2. School of Engineering, Computer Department, Damghan University, Damghan, Iran.

Article Info Abstract

Article History:
Received: 2025/04/28

Revised: 2025/06/11
Accepted: 2025/06/11

DOI:

 In light of its excellent learning accuracy and rate, rapid data

processing, and independence from large databases for network

training, the U-Net architecture is a well-known and popular deep

learning architecture for image segmentation and feature extraction.

Learning rate selection and updating are crucial in network training. As

U-Net is a completely nonlinear network, classical mathematical

optimization algorithms increase the probability of local optima. This

analytical research paper used the grasshopper optimization algorithm

(GOA) as a metaheuristic approach to optimize the learning rate of U-

Net. The network was trained using 256*256 CT images of the lungs

of COVID-19 infected and uninfected individuals. A total of 400 CT

images were employed as the training dataset, whereas 80 CT images

were used as the testing data. Coding was implemented in MATLAB.

The optimization of the learning rate enhanced image segmentation

accuracy by 2.23%. Iterative metaheuristic algorithms would lead to

longer network training times. However, the proposed network

optimization method could be very useful when large databases are not

available for network training and higher accuracy is preferred over

time savings.

Keywords:
Covid-19, GOA, Image

segmentation, Metaheuristic, U-

Net.

*Corresponding Author’s Email

Address:
alireza.mehravin@gmail.com

1. Introduction

U-Net is a convolutional neural network proposed

by researchers at the University of Fribourg in

2015 for biomedical image segmentation

purposes. Designed through convolutional

networks, the U-Net architecture accelerates

processing and enhances learning accuracy based

on limited training data samples. Figure 1 depicts

the U-Net architecture and the operations in its

different layers [1, 2].

The architecture of U-Net is based on an encoder-

decoder model, where the encoder part of the

network learns to extract high-level features from

the input image, while the decoder part of the

network learns to reconstruct the output image

from the learned features. The U-Net model also

includes skip connections between the encoder

and decoder layers. These skip connections allow

the decoder layers to use the features learned by

the corresponding encoder layers, which helps to

preserve spatial information and improve the

accuracy of segmentation [3].

Figure 1. U-Net architecture.

One of the key advantages of U-Net is its ability

to perform well with limited training data. This is

A. Mehravin et al./ Journal of Optimization of Soft Computing (JOSC), 3(1): 63-69, 2025

64

achieved by using data augmentation techniques

such as rotation, flipping, and scaling during

training. Additionally, U-Net can be modified to

work with various input sizes, making it a

versatile architecture for a wide range of image

segmentation tasks. U-Net has been extensively

implemented in medical imaging applications,

such as tumor detection and cell segmentation, as

well as in other image segmentation tasks,

including the segmentation of roads and buildings

in satellite imagery [4, 5]. The accuracy of the

network's learning can be enhanced by employing

appropriate parameters for its training.

2. Materials and Methods

To obtain optimal convergence in the learning

process of a neural network, it is necessary to

optimize the loss function [6]. Extensive and

useful interactions between optimization and

machine learning methods have been important

breakthroughs in state-of-the-art computing.

Many optimization problems in engineering

sciences are complex and cannot be solved

through conventional optimization approaches,

such as mathematical programming. Heuristic

(or approximate) algorithms can be used to solve

such problems. These algorithms would not

guarantee that the optimal solution is the exact

solution to the problem and can only obtain a

relatively accurate solution in a long time; the

accuracy of the solution varies with time [7, 8].

3. Data Description

Preprocessing is necessary to enhance the

quality of image segmentation. The

preprocessing stage involves various operations

such as image size reduction, noise reduction,

and histogram equalization [9]. To ensure the

network is trained more accurately and to reduce

the computational load, the dimensions of the

images were scaled down to 256x256. To train

the network, a dataset of lung CT images of

COVID-19 infected patients and uninfected

individuals with was used. A total of 400 CT

images were utilized as the training dataset,

whereas 80 CT images were used as the testing

data. This dataset is publicly available on the

Kaggle website. MATLAB R2020b was used to

implement the codes on a computer equipped

with an intel core i7 processor running at 2.8

GHz, along with 16GB of RAM and 4GB GPU.

4. Proposed Method

In the U-Net architecture, it has been observed

that the initialization of the learning rate among

its hyperparameters has a significant impact on

the accuracy of the network [10]. During the

training process of the network, a certain

scheduling strategy is employed to gradually

decrease the initial learning rate, which in turn

helps to minimize the loss function. Two

hyperparameters affect the performance of the

training process, i.e., the learning rate drop

factor and the learning rate drop period. The

former is a value between 0 and 1 that

determines the rate at which the learning rate

decreases while the latter is the number of

epochs after which the learning rate is decreased

[11].

As U-Net is a completely nonlinear network, the

use of classical mathematical optimization

algorithms increases the probability of local

optima. Hence, metaheuristic algorithms can be

employed to obtain solutions closer to global

optima at the cost of execution time [12].

Learning rate selection and updating are

essential. A sub-optimal learning rate

excessively lengthens the convergence of the

network, leading to trapping in local minima. On

the other hand, an over-optimal learning rate

would diminish network performance, with the

network likely to neglect the most optimal

solution to the problem [13]. It should also be

noted that the initiation of the learning rate is

crucial since different initiation points result in

different paths, playing a key role in local and

global minima [14]. Equation (1) represents the

role of the learning rate () in network training.

θ=θ-
∂L(θ)

∂θ
 (1)

where θ represents the parameter that minimizes

the loss function (L). This parameter can be

assumed to denote network weights [15]. The

scheduling of the learning rate can be used to

improve stochastic gradient descent performance

to update the weights. An optimal learning rate

minimizes the iterations of the stochastic

gradient descent and, thus, reduces the

computational burden [16].

This paper adopted the grasshopper optimization

algorithm (GOA) to optimize the learning rate

hyperparameter in U-Net training to enhance

image segmentation accuracy. A visual

representation of the step-by-step process used

in our proposed method can be seen in Figure 2.

Learning Rate Optimization of U-Net Architecture Using Grasshopper Optimization Algorithm

65

Figure 2. Diagram of the proposed method.

5. GOA

The GOA was introduced by Mirjalili et al.

(2017). It is a metaheuristic algorithm inspired by

the behavior of grasshopper swarms. It exploits

swarm intelligence and is a population-based

algorithm.

Exploration and exploitation are the two main

features of metaheuristic algorithms. The

configuration of a metaheuristic algorithm is

determined by the interaction of these two

features. Mirjalili et al. (2017) claimed that the

lifecycle of grasshoppers intrinsically had the

exploration and exploitation features; immature

grasshoppers (nymphs) have soft, continuous

movements and play the exploitation role, while

mature ones have completely stochastic and

jumpy movements and play the exploration role.

These two features simultaneously exist in

grasshopper swarms; therefore, efficient modeling

of grasshopper behavior would provide a

relatively powerful optimization algorithm. The

GOA model for position updating of each

grasshopper is written as:

xi
d(t+1)=c (∑ c

ubd-lbd

2

npop

j=1,j≠i s(|xj(t)-

xi(t)|)
xj(t)-xi(t)

dij(t)
)+T̂d(t) (2)

where ubd is the upper bound and lbd denotes the

lower bound of the solution space in dimension d.

Furthermore, Td(t) denotes the best solution found

until iteration t in dimension d, and c is a

decreasing factor.

The social force function is defined as:

s(d)=fe
-
d

l -e-d (3)

where d is the function input and represents the

distance, f is the intensity of attraction, and l

represents the attractive length scale. Here,

function s stands for the effects of social

interactions (attraction and repulsion) among

grasshoppers. The behavior of this function is

dependent on f and l values.

The adaptive parameter of c appears twice in

equation (2). The outer c is very similar to the

inertia weight w in particle swarm optimization

(PSO) and reduces the movements of

grasshoppers around the target [17-19]. In other

words, this parameter moderates the exploration

and exploitation of the swarm around the target.

The inner c reduces the attraction zone, comfort

zone, and repulsive zone between grasshoppers.

This factor linearly reduces the space in which

grasshoppers are to explore and exploit based on

c
ubd-lbd

2
 in equation (2).

Figure 3 depicts the GOA procedure.

Figure 3. GOA flowchart.

6. Results

When initializing a neural network and selecting

its associated hyperparameters, there are typically

two approaches that can be taken. In the first

scenario, values are assigned based on empirical

knowledge or prior experience with similar

models. The second scenario involves using a

metaheuristic algorithm to search for optimal

solutions within a range of values that we know

empirically has a higher probability of network

convergence.

The initial learning rate, learning rate drop factor,

and learning rate drop period were empirically set

to 0.003, 0.4, and 8 respectively in the first

approach. In contrast, these values were

determined by the GOA in the proposed method.

It is worth mentioning that in both scenarios, the

number of epochs was set equal to 80.

Figure 4 shows the values proposed by the GOA

for the three hyperparameters and the best cost

value in the last ten iterations of the algorithm. It

should be noted that 20 grasshoppers and 30

iterations were employed in the GOA.

A. Mehravin et al./ Journal of Optimization of Soft Computing (JOSC), 3(1): 63-69, 2025

66

Figure 4. Values proposed by the GOA.

The normalized confusion matrix was calculated,

as shown in Figure 5. Two classes were employed

in network training; one label to highlight the

COVID-19 damaged areas and one label to

represent the background.

Figure 5. a) U-Net confusion matrix, b) Optimized U-Net

confusion matrix.

Table 1 provides several tested samples and the

results of base and optimized segmentation.

6.1. Evaluation Results

Performance was evaluated using the true

positive, true negative, false positive, and false

negative parameters:

TP: Correct classification of pixels corresponding

to damaged areas of the lung,

TN: Correct classification of pixels in

background regions,

FP: Pixels corresponding to background regions

incorrectly classified as damaged regions,

FN: Pixels corresponding to damaged areas of the

lung that are incorrectly classified as background

regions.

In a CT image of the chest, the positive class

refers to the damaged lung areas, while the

negative class corresponds to the background.

Table 1 . Base and optimized CT image segmentation

Ground Truth

Optimized U-Net U-Net Input Image

Learning Rate Optimization of U-Net Architecture Using Grasshopper Optimization Algorithm

67

Equations (4-7) represent the evaluation criteria

[20- 23].

Accuracy=
TP +TN

TP+TN+FP+FN
 (4)

Precision=
TP

TP+FP
 (5)

Recall=Sensitivity=
TP

TP+FN
 (6)

F1-Score=2×
Precision×Recall

Precision+Recall
 (7)

Table 2 compares the base and optimized U-Net

models based on the confusion matrix and

evaluation criteria.

Table 2. Evaluation results(%)

Evaluation Criteria U-Net Optimized U-Net

Accuracy 90.61 92.84

Precision 98.74 99.11

Recall 82.26 86.45

F1-Score 89.74 92.34

7. Discussion

As a result of the optimization conducted in this

research, the accuracy of the entire network for

CT scan image segmentation has observed an

increase of 2.23%. Furthermore, it is worth noting

that the accuracy has significantly improved by

4.19% in detecting the damaged area. It is

noteworthy that the optimization method

discussed here can be applied to all deep learning

models during the learning process. The

utilization of meta-heuristic algorithms for

solving non-linear problems is a widely accepted

practice. In this research, the GOA was employed

to optimize the learning rate of the network. In a

study closely related to the present research,

Mahesh Kumar et al. were able to enhance the

accuracy of segmentation in MRI images of brain

tumors through the utilization of a metaheuristic

algorithm known as the Adaptive Search Coyote

Optimization Algorithm (AS-COA) [24]. Another

study carried out by Popat et al. demonstrated that

the accuracy of a neural network for the

segmentation of Retina Blood Vessels can be

improved by optimizing its parameters using the

genetic algorithm [25]. Nevertheless, the

challenge of increasing network learning time

cannot be overlooked. Also, evaluating the impact

of optimizing other critical hyperparameters

during the network training process, such as batch

size, can be investigated.

8. Conclusion

This paper implemented GOA to optimize the U-

Net learning rate and enhance the segmentation

accuracy of CT images of the chest to enable

accurate detection of COVID-19 infected areas

within the lungs. Although iterative metaheuristic

algorithms lengthen training, they are very useful

in network optimization when large databases are

not available for network training and improved

accuracy is preferred over time savings. To

optimize hyperparameters in such models, it is

important to assume a larger grasshopper

population and a larger number of iterations to

obtain a more optimal solution. In other words,

this optimization approach is more useful in

network training with smaller databases and low-

resolution images.

Acknowledgement

This article is derived from the master's thesis of

Alireza Mehravin. University of Damghan,

Damghan, Iran.

References
[1] Ronneberger, O., Fischer, P., & Brox, T.

(2015). “U-NET: Convolutional Networks for

Biomedical Image Segmentation”. arXiv (Cornell

University).

https://doi.org/10.48550/arxiv.1505.04597.

[2] Shamim, S., Awan, M. J., Zain, A. M.,

Naseem, U., Mohammed, M. A., & Garcia-

Zapirain, B. (2022). “Automatic COVID-19 Lung

Infection Segmentation through Modified Unet

Model”. Journal of Healthcare Engineering,

2022, 1–13.

https://doi.org/10.1155/2022/6566982.

[3] Saood, A., & Hatem, I. (2021). “COVID-19

lung CT image segmentation using deep learning

methods: U-Net versus SegNet”. BMC Medical

A. Mehravin et al./ Journal of Optimization of Soft Computing (JOSC), 3(1): 63-69, 2025

68

Imaging, 21(1). https://doi.org/10.1186/s12880-

020-00529-5.

[4] Kalane, P., Patil, S. D., Patil, B. A., &

Sharma, D. P. (2021). “Automatic detection of

COVID-19 disease using U-Net architecture

based fully convolutional network”. Biomedical

Signal Processing and Control, 67, 102518.

https://doi.org/10.1016/j.bspc.2021.102518.

[5] Raj, A. N. J., Zhu, H., Khan, A., Zhuang, Z.,

Yang, Z., Mahesh, V. G. V., & Karthik, G.

(2021). “ADID-UNET—a segmentation model

for COVID-19 infection from lung CT scans”.

PeerJ, 7, e349. https://doi.org/10.7717/peerj-

cs.349.

[6] Kaur, S., Kumar, Y., Koul, A., & Kamboj, S.

K. (2022). “A Systematic Review on

Metaheuristic Optimization Techniques for

feature selections in Disease Diagnosis”: Open

Issues and Challenges. Archives of Computational

Methods in Engineering, 30(3), 1863–1895.

https://doi.org/10.1007/s11831-022-09853-1.

[7] Antoniou, A., & Lu, W. (2021). Practical

Optimization: Algorithms and engineering

applications. https://doi.org/10.1007/978-1-0716-

0843-2

[8] Wong, W., & Ming, C. I. (2019). “A Review

on Metaheuristic Algorithms: Recent Trends,

Benchmarking and Applications”. 2019 7th

International Conference on Smart Computing &

Communications (ICSCC).

https://doi.org/10.1109/icscc.2019.8843624.

[9] Yang, D., Martinez, C., Visuña, L., Khandhar,

H. M., Bhatt, C., & Carretero, J. (2021).

“Detection and analysis of COVID-19 in medical

images using deep learning techniques”. Scientific

Reports, 11(1). https://doi.org/10.1038/s41598-

021-99015-3.

[10] Elaziz, M. A., Dahou, A., Abualigah, L., Yu,

L., Alshinwan, M., Khasawneh, A. M., & Lu, S.

(2021). “Advanced metaheuristic optimization

techniques in applications of deep neural

networks: a review”. Neural Computing and

Applications, 33(21),14079–14099.

https://doi.org/10.1007/s00521-021-05960-5.

[11] Takase, T., Oyama, S., & Kurihara, M.

(2018). “Effective neural network training with

adaptive learning rate based on training loss”.

Neural Networks, 101, 68–78.

https://doi.org/10.1016/j.neunet.2018.01.016.

[12] Nematzadeh, S., Kiani, F., Torkamanian-

Afshar, M., & Aydin, N. (2022). “Tuning

hyperparameters of machine learning algorithms

and deep neural networks using metaheuristics: A

bioinformatics study on biomedical and biological

cases”. Computational Biology and Chemistry,

97,107619.

https://doi.org/10.1016/j.compbiolchem.2021.107

619.

[13] Kaveh, A., & Hamedani, K. B. (2022).

“Advanced metaheuristic algorithms and their

applications in structural optimization”. In

Springer eBooks. https://doi.org/10.1007/978-3-

031-13429-6.

[14] Li, C., Jiang, J., Zhao, Y., Li, R., Wang, E.,

Zhang, X., & Zhao, K. (2021). “Genetic

Algorithm based hyper-parameters optimization

for transfer Convolutional Neural Network”.

arXiv (Cornell University).

https://doi.org/10.48550/arxiv.2103.03875.

[15] Thavasimani, K., & Srinath, N. K. (2022).

“Hyperparameter optimization using custom

genetic algorithm for classification of benign and

malicious traffic on internet of things–23 dataset”.

International Journal of Power Electronics and

Drive Systems, 12(4), 4031.

https://doi.org/10.11591/ijece.v12i4.pp4031-4041.

[16] Gaspar, A., Oliva, D., Cuevas, E., Zaldivar,

D., Pérez, M. A., & Pajares, G. (2021).

“Hyperparameter optimization in a convolutional

neural network using metaheuristic algorithms”.

In Studies in computational intelligence (pp. 37–

59). https://doi.org/10.1007/978-3-030-705428_2.

[17] Okwu, M. O., & Tartibu, L. K. (2021).

“Metaheuristic Optimization: Nature-Inspired

algorithms swarm and computational intelligence,

theory and applications”. In Studies in

computational intelligence.

https://doi.org/10.1007/978-3-030-61111-8.

[18] Saremi, S., Mirjalili, S., & Lewis, A. (2017).

“Grasshopper Optimisation Algorithm: Theory

and application”. Advances in Engineering

Software, 105, 30–47.

https://doi.org/10.1016/j.advengsoft.2017.01.004.

[19] El-Shorbagy, M. A., & El-Refaey, A. M.

(2020). “Hybridization of Grasshopper

optimization algorithm with genetic algorithm for

solving system of Non-Linear equations”. IEEE

Access, 8, 220944–220961.

https://doi.org/10.1109/access.2020.3043029.

[20] Fazli, M., & Faraji, S. (2023). A survey of

meta-heuristic methods for optimization

problems. Journal of Optimization in Soft

Computing, 1(1), Article 14020615783207.

https://doi.org/10.82553/josc.2023.140206157832

07.

[21] Wang, R., Lei, T., Cui, R., Zhang, B., Meng,

H., & Nandi, A. K. (2022). “Medical image

segmentation using deep learning: A survey”. Iet

Image Processing, 16(5), 1243–1267.

https://doi.org/10.1049/ipr2.12419.

[22] Polat, H. (2022). “Multi-task semantic

segmentation of CT images for COVID-19

Learning Rate Optimization of U-Net Architecture Using Grasshopper Optimization Algorithm

69

infections using DeepLabV3+ based on dilated

residual network”. Physical and Engineering

Sciences in Medicine, 45(2), 443–455.

https://doi.org/10.1007/s13246-022-01110-w.

[23] Kiyoumarsi, P., Kiyoumarsi, F., Zamani

Dehkordi, B., & Karbasiyoun, M. (2024). A

feature selection method on gene expression

microarray data for cancer classification. Journal

of Optimization in Soft Computing, 2(3), Article

140308101189068.

https://doi.org/10.82553/josc.2024.140308101189

068.

[24] Kumar, G. M., & Parthasarathy, E. (2023).

“Development of an enhanced U-Net model for

brain tumor segmentation with optimized

architecture”. Biomedical Signal Processing and

Control,81,104427.

https://doi.org/10.1016/j.bspc.2022.104427.

[25] Popat, V., Mahdinejad, M., Dalmau, O.,

Naredo, E., & Ryan, C. (2020). “GA-based U-Net

Architecture Optimization Applied to Retina

Blood Vessel Segmentation”. Proceedings of the

12th International Joint Conference on

Computational Intelligence. SCITEPRESS -

Science and Technology Publications.

https://doi.org/10.5220/001011220192.

