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This paper introduces a novel approach named VGAEE (Variational Graph 

AutoEncoder Embedding), an innovative deep-learning framework for 

detecting communities in attributed social networks. By synergistically 

integrating node content with network topology, VGAEE aims to enhance the 

quality of community identification. Initially, we computed the modularity 

and Markov matrices of the input graph. These matrices were then 

concatenated and used as the input for the VGAEE to create a meaningful 

representation of the graph. In the decoder component of VGAEE, two layers 

of Graph Convolutional Networks (GCN) are employed. Subsequently, a K-

Nearest Neighbors (KNN) algorithm was used for clustering communities 

based on the embeddings generated previously. We conducted experiments 

on three benchmark datasets—Cora, Citeseer, and PubMed—and compared 

the results with various baseline and state-of-the-art methods using Accuracy 

(ACC) and Normalized Mutual Information (NMI) as evaluation metrics. The 

findings demonstrate that VGAEE significantly improves community 

detection performance, achieving an accuracy of 84.5% on Cora , 80.5% on 

PubMed, and 75.6% on Citeseer. In terms of NMI, VGAEE reached 70.46% 

on Cora, 55.60% on PubMed, and 57.06% on Citeseer, consistently 

outperforming existing methods. These results confirm the superiority of 

VGAEE in accurately capturing community structures within large, complex 

networks, making it a highly effective tool for unsupervised community 

detection. 
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1.introduction  

The study of community structures within 

networks has advanced significantly since the early 

days of sociological research, evolving into a 

critical field that employs complex mathematical 

tools for large-scale data analysis. Since the 

groundbreaking work of Girvan and Newman in 

2002, identifying and understanding these 

structures has become essential for analyzing the 

composition and function of various networks, 

with applications spanning diverse fields such as 

epidemiology and marketing. 

Despite advancements in topological, content-

based, and graph-theoretical approaches to 

community detection, existing methods still face 

several challenges—especially in the quality of 

vector representations for network nodes. Many 

current techniques fail to fully capture both the 

structural and contextual information of nodes. As 

a result, they often struggle with tasks like 

clustering and classification and are unable to keep 

up with the increasing demands of growing and 

more complex networks. 

This paper explores the limitations of traditional 

community detection methods, particularly when 

applied to large-scale or high-dimensional 

networks constrained by computational power and 

data volume. These challenges significantly hinder 

the effectiveness of conventional approaches in 

analyzing modern, complex relational data. To 

address these issues, this study leverages graph 

neural networks (GNNs), a specialized branch of 

deep learning tailored for graph data. By reducing 

network dimensions and enhancing node 

representations, this approach accelerates the 

community detection process. Additionally, this 

research integrates the modularity matrix with the 

Markov matrix to improve detection accuracy, 

making the proposed methods more efficient and 

suitable for complex network structures. The 

contributions and innovations of this study are 

summarized as follows: 

 Integration of Node Content and 

Network Topology: The VGAEE 

(Variational Graph AutoEncoder 

Embedding) framework uniquely 

combines node content with network 

topology to enhance community detection 

in attributed social networks. This 

integration provides a more 

comprehensive understanding of both 

network structure and content. 

 Use of Modularity and Markov 

Matrices: The approach introduces an 

innovative step by computing modularity 

and Markov matrices from the input graph. 

These matrices are then concatenated and 

used as inputs for VGAEE, enabling a 

more nuanced representation of the graph 

structure. 

 Graph Convolutional Networks in the 

Decoder: The application of two layers of 

Graph Convolutional Networks (GCN) 

within the VGAEE decoder is a novel 

feature. This technique leverages GCNs' 

capabilities to learn and generate high-

quality embeddings that accurately reflect 

the true community structure. 

 Community Clustering via KNN: After 

generating embeddings, VGAEE utilizes 

the K-Nearest Neighbors (KNN) algorithm 

for clustering. This innovative step 

effectively combines a traditional machine 

learning algorithm with a deep learning 

framework to improve community 

identification. 

 Benchmark Dataset Experiments: The 

paper conducts extensive experiments 

using three widely recognized benchmark 

datasets—Cora, Citeseer, and PubMed. 

These rigorous tests validate the model's 

effectiveness and provide a strong basis for 

comparison with baseline and state-of-the-

art methods. 

 Superior Performance Metrics: The 

VGAEE framework outperforms existing 

algorithms in both accuracy and 

Normalized Mutual Information (NMI), 

demonstrating its superior ability to 

identify and differentiate community 

structures in complex networks. 

Community detection is widely recognized as an 

NP-hard problem that presents a range of 

computational challenges. This paper addresses 

these issues by focusing on both computational 

efficiency and detection accuracy in attributed 

social networks. By utilizing GNNs, the study 

introduces innovative embedding techniques and 

improved graph representation learning strategies, 

ultimately providing a more effective approach to 

community detection. 

We structure the remainder of this paper as follows: 

Section 2 surveys the existing literature on graph 

convolutional networks and dual embedding 

techniques, outlining fundamental advances and 

identifying the gaps that our study aims to address. 

Section 3 introduces the necessary concepts and 
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notations, providing the foundation for 

understanding the methodologies discussed later. 

Section 4 presents a detailed description of the 

proposed algorithm, VGAEE, along with its 

pseudocode. Section 5 offers a comprehensive 

overview of the datasets used for testing, explains 

the evaluation metrics employed to assess 

performance, and describes the chosen parameters 

and experimental setup. Finally, Section 6 presents 

the conclusion and discusses directions for future 

work. 

2. Literature review 

 

With recent advances in information technology 

and the digital world, complex network theory has 

found applications in various fields, including 

social networks, biological networks, and internet 

networks. One of the key challenges in complex 

network research is community detection, which 

aims to identify the structural properties of 

networks. Communities in a network are formed by 

groups of nodes that have stronger internal 

connections and fewer connections with external 

nodes. Early community detection methods 

primarily relied on the topological characteristics 

of networks, and numerous approaches have been 

proposed based on different criteria for similarity 

and proximity among groups. Before the 

development of deep learning techniques, 

community detection methods were broadly 

categorized into two main groups: Hierarchical 

methods and Partitioning methods. Hierarchical 

methods begin with either a partition where each 

node is considered an independent cluster or a 

partition where all nodes belong to a single 

community. Clusters are then iteratively merged or 

divided based on a quality measurement criterion, 

forming a hierarchical structure. While hierarchical 

methods do not require prior knowledge of the 

number of communities, they do depend on a 

specific criterion to determine meaningful 

partitions. 

On the contrary, partitioning methods identify 

clusters through iterative member allocation. These 

methods assess the quality of partitions by 

optimizing one or more objective functions. Some 

commonly used partitioning techniques include 

finding the largest number of cliques in a graph [1], 

modularity maximization [2], matrix 

decomposition [3], seed expansion [4], linear 

sparse coding [5], sparse linear coding [5], and 

evolutionary algorithms [1]. Both hierarchical and 

partitioning methods involve high computational 

costs, making them inefficient for large-scale 

networks. In other words, these approaches 

struggle to find optimal solutions within a 

reasonable timeframe. To address this issue, more 

adaptive local methods have been introduced to 

detect separate and overlapping communities more 

efficiently [6]. One such example is label 

propagation-based methods, which use the local 

expansion of node labels to identify communities 

in linear time [7]. 

Deep learning (DL) techniques are widely applied 

in various fields, including computer and social 

sciences, economics, agriculture, healthcare, and 

medicine [8]. Network representation learning 

(NRL) converts complex network structure data 

into a low-dimensional, manageable space, making 

it useful across these diverse applications. This 

approach includes learning network 

representations [9], network embedding [10], and 

graph embedding [11], all designed to preserve the 

network’s typological structure, vertex content, 

and auxiliary information. 

These advanced learning methods have 

transformed the way complex classification, 

clustering, and prediction models are constructed 

through effective graph data representation. They 

simplify the execution of analytical tasks that 

would traditionally require more complex models. 

Network Representation Learning (NRL) 

techniques focus on reducing the dimensionality of 

network vertices representations while preserving 

essential topological and content features of the 

network [9]. These representations are then utilized 

as vector inputs for machine learning tasks such as 

node classification and link prediction, fostering 

the creation of more refined and effective NRL 

strategies for complex networks [10]. Methods for 

graph representation learning are generally divided 

into three main categories: probabilistic models, 

deep learning-based algorithms, and matrix 

decomposition algorithms. Each category will be 

further discussed to highlight their unique 

approaches and applications. 

Probabilistic Models: Techniques such as LINE 

[12] and Node2vec [13] are designed to extract 

varied graph patterns to enhance embedding 

learning. Node2vec efficiently maps nodes into a 

vector space, which significantly boosts the 

performance of link prediction and node 

classification tasks. LINE is notable for its large-

scale application, utilizing edge sampling strategies 

to address the typical challenges associated with 

stochastic gradient descent. This adaptation 

improves the graph embedding process while 

maintaining high efficiency. 
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Deep Learning-Based Algorithms: DeepWalk 

[14] is a prime example of integrating deep 

learning with graph theory. It excels at encoding 

the complete structural information of graphs by 

leveraging the local structural information of 

vertices and incorporating the Skip-Gram model 

within the framework of random walks. This 

approach has been particularly successful in social 

networks for tasks like multilabel classification. 

Deep learning models capture the nonlinear 

dynamics of complex, extensive networks by 

analyzing various relational data, including nodes, 

neighbors, edges, subgraphs, and community 

features. These models are particularly effective in 

handling sparse networks and excel in 

unsupervised learning contexts. Algorithms like 

DNGR, SNDE, and ANRL [15] use deep 

autoencoder models for representing high-

dimensional data. Conversely, end-to-end 

network-based methods like SNE [16] and 

DeepGL [17] blend structural and attribute data to 

enhance graph representation learning. 

Additionally, MGAE [18] utilizes a single-layer 

autoencoder, simplifying clustering tasks, while 

HNE [19] merges deep autoencoder neural 

networks with convolutional networks to process 

adjacent vectors and images. 

Matrix Decomposition Algorithms: This 

category includes techniques like M-NMF [20] and 

TADW [21], which are focused on matrix 

decomposition to effectively learn node 

representations. These methods are crucial for 

untangling complex network structures, enabling 

deeper insights into network dynamics and 

interactions. 

Together, these methods establish a solid 

framework for managing and analyzing complex 

networks across diverse domains, accommodating 

a broad spectrum of applications from theoretical 

research to practical, real-world problem-solving. 

This comprehensive approach ensures that insights 

derived from graph theory and network analysis are 

not only theoretically sound but also applicable in 

solving actual challenges in fields such as social 

networking, bioinformatics, and 

telecommunications. 

Wang et al. [22] effectively utilized a graph 

autoencoder to achieve deep representations, which 

were then applied in a spectral clustering algorithm 

to enhance graph clustering. In a similar vein, He 

et al. [23] developed a nonlinear restructuring 

approach for modularity matrices using deep neural 

networks, which they further adapted into a semi-

supervised community detection algorithm by 

incorporating constraints on paired graph nodes. 

Both approaches address significant challenges 

associated with high computational demands and 

the need for extensive parameter tuning, such as 

determining the number of clusters, which often 

remains undefined in large and heterogeneous 

networks globally. More recently, advancements in 

graph neural networks (GNNs), including graph 

convolutional networks (GCNs), have been 

introduced to address community detection issues 

[24, 25]. GCNs amalgamate the information from 

neighboring nodes through deep convolutional 

layers in graphs, employing convolutional 

operations similar to those used in convolutional 

neural networks to extract and represent complex 

community features based on network topology 

and node characteristics [26]. 

Originally, Graph Convolutional Networks 

(GCNs) were not designed with community 

detection in mind, meaning they did not 

specifically target community structures during 

node embedding learning, nor did they impose 

constraints on the structural relationships between 

communities and nodes. Addressing this limitation, 

Jin et al. [27] introduced a semi-supervised 

community detection model named MRFasGCN. 

This model integrates a GCN with the Markov 

Random Fields (MRF) statistical model to enhance 

community detection capabilities. The innovation 

lies in extending the Markov Random Field into a 

new convolutional layer within the GCN 

framework, thereby allowing MRFasGCN to 

effectively oversee and refine the overall outcomes 

of the GCN's community detection efforts. 

Sun et al. [28] developed a framework to enhance 

network embedding for clustering nodes in 

attributed graphs. This innovative framework 

concurrently learns graph-based and cluster-

oriented representations. It consists of three key 

components: a graph autoencoder module, a soft 

modularity maximization module, and a self-

clustering module. The graph autoencoder module 

is tasked with learning node embeddings that 

incorporate both the topological structure and the 

node properties. 

Jin et al. [29] introduced an unsupervised model for 

community detection using GCN embedding, 

employing the GCN as the primary structure of the 

encoder to reconcile two types of information: 

topology and property. This model utilizes a dual 

encoder setup to extract distinct embeddings from 

these two data sources. 

Luo et al. [30] presented a deep-learning model that 

aims to simultaneously identify communities and 

structural holes using a GCN-based encoder. This 
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approach leverages the GCN's ability to integrate 

network topology and node properties for 

community detection. However, the model faces 

challenges as it (1) learns representations through 

encoding topological features and node properties 

without considering community-specific features, 

resulting in embeddings that are not community-

centric, and (2) operates as a semi-supervised 

rather than a fully unsupervised model. 

Wang et al. [31, 32] proposed a novel approach 

involving nonnegative matrix decomposition, 

introducing a community membership matrix and a 

community characteristic matrix. They also 

developed several efficient updating rules that 

ensure convergence. This method enhances 

community detection by incorporating node 

attributes, which also provide a semantic 

interpretation of the communities. 

Efforts have also been made to develop semi-

supervised methods for community detection by 

integrating network representations with data 

labels through graph-based regulation to identify 

unlabeled nodes. Young et al. [33] utilized node 

representations to predict network backgrounds 

and applied node labels to facilitate various transfer 

and inductive learning strategies. Recent 

advancements include the introduction of graph 

convolutional networks for network analysis, with 

GCN-based methods enhancing both network 

topology and attribute data analysis. Unlike most 

semi-supervised approaches that predominantly 

focus on network structure, these methods require 

a substantial number of node labels to classify 

unlabeled nodes. Sun et al. also introduced a graph 

convolutional autoencoder framework for 

clustering nodes, and several unsupervised 

methods have been recently proposed to advance 

this field. 

In [34], a supervised model within the CNN 

framework was introduced for typological defect 

networks. This model incorporates two CNN layers 

with max-pooling operators to represent the 

network structure and a fully connected DNN layer 

dedicated to community detection. The 

convolutional layers are designed to capture the 

local attributes of each node from multiple 

perspectives. Testing on Topological Interference 

Networks (TINs), with a configuration of 10% 

labeled nodes and 90% unlabeled nodes, this model 

achieved an impressive 80% accuracy in 

community detection, highlighting that 

incorporating high-order neighbor representation 

can significantly enhance the accuracy of detecting 

communities. 

In [35], a model named the Linear Graph Neural 

Network (LGNN) was proposed to enhance the 

efficiency of the Stochastic Block Model (SBM) in 

community detection while also reducing 

computational costs. The LGNN effectively learns 

the represented attributes of nodes in directed 

networks by employing a combination of non-

backtracking operators and messaging rules, 

streamlining the process and optimizing 

performance. 

In [36], the CommDGI model was introduced, 

which optimizes graph representation and 

clustering concurrently through mutual 

information on nodes and communities while 

aiming to maximize graph modularity. This 

approach utilizes k-means clustering to 

strategically align nodes with cluster centers, 

enhancing the clarity and effectiveness of 

community detection. 

Additionally, while Spectral GCNs adeptly reveal 

all hidden attributes of a node's neighborhood, they 

can lead to over-smoothing, which may obscure 

distinct community structures. To counter this 

effect, graph convolutional ladder-shaped 

networks have been developed as a novel GCN 

architecture. Inspired by the U-Net model in the 

CNN domain, this unsupervised community 

detection approach [37] aims to mitigate the over-

smoothing issue, ensuring more distinct and 

actionable community detection outcomes. 

In scenarios where various types of links are treated 

as simple edges, GCNs typically represent each 

link separately and then aggregate them, which can 

lead to redundancy in representation. To address 

this, IPGDN [38] introduces a methodology that 

segments neighborhoods into different sections and 

autonomously identifies independent hidden 

attributes of a graph. This approach simplifies the 

process of community detection. The IPGDN 

model is enhanced by the use of the Hilbert–

Schmidt independence criterion in neighborhood 

routing, facilitating more precise and effective 

community detection. Moreover, adaptive graph 

convolution has been developed to identify 

communities within attributed graphs. This 

technique relies on both structural data and 

representational features, categorizing neighboring 

nodes and nodes with similar attributes into the 

same community cluster. In this process, two graph 

signals are combined, necessitating the filtering of 

high-frequency noise, which is achieved through 

the design of a low-pass graph filter with a specific 

frequency response function. 
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In [39], a sophisticated method using Cayley 

polynomials was introduced to achieve high-order 

approximations within the spectral convolutional 

framework of graph neural networks. Although the 

exploration of GCN filters is relatively limited, 

CayleyNets are distinguished by their use of low-

pass filters that effectively utilize extensive 

community data for precise community 

identification. 

In [40], challenges associated with graph 

convolutional neural networks in processing 

complex relational graphs, such as excessive 

smoothing during node classification, are 

addressed. The newly developed SM-GCN model 

strives to enhance node categorization accuracy by 

reducing dependency on individual node features 

and incorporating scattering embeddings. This 

innovation is specifically designed to mitigate the 

over-smoothing effect, ensuring more distinct and 

accurate node classifications in complex network 

structures. 

In [41], a new model known as the Graph 

Convolutional Fusion Model (GCFM) was 

introduced for enhancing community detection in 

multiplex networks, which are composed of 

multiple layers, each representing a different type 

of relationship among the same set of nodes. The 

GCFM utilizes a graph convolutional autoencoder 

for each layer to capture and encode the structural 

features specific to each layer while considering 

the connections between neighboring nodes. This 

approach allows for a more nuanced and accurate 

detection of communities across the complex 

interlayer dynamics of multiplex networks. 

In [42], the Temporal Attributed Network 

Matrix Factorization (TANMF) algorithm was 

developed to detect dynamic modules within 

cancer temporal-attributed networks, incorporating 

both genomic data and temporal network changes. 

The experimental results showed that TANMF not 

only surpasses existing methods in accuracy but 

also enriches identified modules with known 

biological pathways and demonstrates correlations 

with patient survival outcomes, providing valuable 

insights into cancer progression. 

In [43], the Joint Learning Dynamic Edge 

Community (jLDEC) algorithm was proposed for 

identifying dynamic communities within temporal 

networks. This algorithm integrates graph 

representation learning with community detection 

and the dynamics of network edges into a unified 

framework, significantly enhancing the precision 

of community detection. The jLDEC algorithm has 

been shown to perform better than traditional 

methods, particularly in accurately capturing the 

changing dynamics of community structures within 

temporal networks. 

In [44], the Network Embedding to Nonnegative 

Matrix Factorization (NE2NMF) algorithm 

addresses the challenge of detecting dynamic 

communities by combining network embedding 

with nonnegative matrix factorization. It 

incorporates a third-order smoothness strategy that 

accounts for previous, current, and subsequent 

network snapshots, thereby providing a more 

comprehensive characterization of community 

dynamics. Experimental validations confirm that 

NE2NMF not only improves accuracy but also 

enhances the robustness of community detection 

compared to conventional approaches, making it 

particularly effective in dynamic network 

environments. 

In [45], the Joint Learning of Multidimensional 

Clustering (jLMDC) algorithm was presented for 

dynamic community detection in temporal 

networks. This approach integrates feature 

extraction and clustering into a single framework, 

significantly enhancing both the accuracy and 

efficiency of detecting dynamic communities. 

Compared to traditional methods, jLMDC shows 

marked improvements in computational speed and 

accuracy, making it highly effective for managing 

large-scale networks and their complex community 

dynamics. 

In [46], the Deep Autoencoder-like Nonnegative 

Matrix Factorization for Multi-View Learning 

(DANMF-MRL) was introduced, employing a 

deep encoding process to create a representation 

matrix. This matrix is subsequently decoded to 

reconstruct the original data. Utilizing the DANMF 

framework, the method addresses the challenges of 

maintaining consistency and complementarity in 

multi-view data, greatly enriching the depth and 

comprehensiveness of data representations. 

In [47], a Nonnegative Matrix Factorization-based 

Multi-View Learning (MRL) framework was 

proposed, which considers two critical 

components: an exclusivity term to leverage 

diverse intra-view information and a consistency 

term to ensure unified representations across 

multiple views. Additionally, a local manifold 

component is included to preserve the local 

geometric structure of the data. An alternating 

optimization algorithm based on multiplicative 

updates was introduced to solve this problem, with 

proven convergence. 

Review studies have shown that graph embedding 

methods can substantially improve efficiency and 
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reduce the time needed for community detection in 

social networks. Variational Graph AutoEncoder 

(VGE), a deep learning-based embedding 

technique, is utilized for network representation 

learning. However, a significant challenge with 

GCNs is their lack of inherent community 

orientation, which can result in node 

representations that may not be sufficiently precise 

for effective community detection. To address this, 

the k-core algorithm is used first to filter the graph 

and eliminate less significant nodes, thereby 

reducing the graph's size and enhancing the 

distinctiveness of its communities. Subsequently, 

the modularity matrix and the Markov matrix, 

which represent the graph's structure and content 

respectively, are concatenated and used as input for 

the VGE. The VGE encoder processes this input 

through two layers of the graph convolution 

network, producing a reduced-dimensional 

representation for each node. This representation is 

then normalized and utilized as the input for the k-

nearest neighbors clustering algorithm to identify 

communities. 

3. Preliminaries and Notation 

This section provides a concise introduction to the 

foundational concepts, including essential 

notations and the formal problem statement. These 

preliminaries establish the groundwork necessary 

for understanding the proposed approach. 

3.1. Attributed graph 

Suppose that 𝐺 = (𝑉, 𝐸, 𝐴, 𝑋) is an attributed 

network where V is a set of vertices 
{𝑣1, 𝑣2, … , 𝑣𝑛}, 𝐸 is a set of edges between nodes, 

A is the adjacency matrix, and X is the attribute 

matrix where an element 𝑋𝑖𝑝 represents the value 

of the p-th attribute for the vertex 𝑣𝑖. In adjacency 

matrix A, if there is an edge between the two 

vertices of 𝑣𝑖 and 𝑣𝑗  then 𝑎𝑖𝑗 > 0. For weightless 

networks, if there is an edge, 𝑎𝑖𝑗 =

1; otherwise,  𝑎𝑖𝑗 = 0. if the network is not direct, 

𝑎𝑖𝑗 = 𝑎𝑗𝑖  also holds [50].  

3.2. Community and community detection 

Consider that we have the community set 𝐶 =
{𝐶1, 𝐶2, … , 𝐶𝑟}. Each community is a network 

partition with regional structures and shared cluster 

attributes. The node 𝑣𝑖 that is clustered in the 

community 𝐶𝑖 It should meet the condition that the 

internal degree of every node is greater than its 

external degree. In this paper, community detection 

is considered in the attributed graph. The graph has 

G attributes and the number of r communities. This 

paper aims to find the function 𝑓: 𝑣 → {1,2,3,… , 𝑟} 
such that r is true for all 𝑓(𝑣𝑖) = 𝑟 nodes of the r 

community. Function partitions should follow the 

following principles: (1) Nodes of a group are 

connected, while the nodes are not connected in 

different groups. (2) Nodes in the same community 

tend to have similar attribute values, while those 

from different communities may vary relatively, 

even if they are neighbors at the graph level. (3) 

The function can adequately maintain the attributed 

graph's node attributes and structural information. 

Finally, we can find the groups separate from the 

nodes and their inductive subnodes, i.e., 

communities. 

3.3. Decomposition k-core:  

Assume a graph G = (V, E) of |V | = n vertices and 

|E| = e edges; a k-core is defined as follows: A 

subgraph H = (C, E|C) induced by the set C ⊆ V is 

a k-core or a core of order k iff ∀ v ∈ C: degree H 

(v) ≥ k, and H is the maximum subgraph with this 

property. Therefore, a k-core of G can be obtained 

by recursively removing all the vertices of degrees 

less than k until all vertices in the remaining graph 

have at least degree k. 

3.4. Modularity and normalization cut:  

Assume that network G = (A, S) is undirected and 

attributed to n nodes, where  𝐴 = [𝑎𝑖𝑗] ∈ 𝑅𝑛∗𝑛 is 

the adjacency matrix. In this matrix 𝑎𝑖𝑗 = 1 if there 

is an edge between nodes i and j; otherwise,  𝑎𝑖𝑗 =

0. Here, 𝛽𝑖 = ∑ 𝑎𝑖𝑗𝑗  is the degree of node i, and 

𝑚 =
1

2
∑ 𝛽𝑖𝑖  is the total number of network edges. 

𝑆 = [𝑠𝑖𝑗] ∈ 𝑅𝑛∗𝑛 is a similarity matrix in which 𝑠𝑖𝑗  

is the cosine similarity value between the 

corresponding content vectors of nodes i and j. 

According to these explanations, the normalized 

cut and modularity models are defined as follows: 

3.4.1. Modularity Model:  

The modularity function Q was first introduced by 

Newman and Girvan in [51] and is widely 

recognized as one of the most prominent quality 

functions for community detection. Due to its 

effectiveness, optimizing Q-modularity has 

become a fundamental approach in community 

detection. Equation (1) formally defines this 

function for two communities: 

∅ =
1

4𝑚
∑ (𝑎𝑖𝑗 −

𝛽𝑖𝛽𝑗

2𝑚
)𝑖𝑗 (𝜓𝑖𝜓𝑗)                       (1)                    

Where 𝜓𝑖 is equal to 1 (or -1) if node 𝑣𝑖 Belongs to 

community 1 (or 2). Modularity can be easily    

optimized using specific vectors and values by 

defining a modularity matrix, as shown in equation 

(2): 
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𝐵 = [𝑏𝑖𝑗] ∈ 𝑅𝑛∗𝑛, with entries   𝑏𝑖𝑗 = 𝑎𝑖𝑗 −
𝛽𝑖𝛽𝑗

2𝑚
                (2) 

Therefore, the modularity ∅  can be rewritten as 

equation (3): 

∅ =
1

4𝑚
𝜓𝑇𝐵𝜓                                                 (3)                 

Where 𝜓 = [𝜓𝑖] ∈ {−1,1}𝑛represents 

membership in a community node. However, 

maximizing modularity is an NP-hard problem. By 

simplifying the problem and allowing variables 𝜓𝑖 

to take any integer value, the problem can be easily 

solved as equation (4): 

𝑚𝑎𝑥 ∅ = 𝑚𝑎𝑥 𝑇𝑟(𝛹𝑇𝐵𝛹)               (4) 

Where 𝛹 = [𝜓𝑖𝑗] ∈ 𝑅𝑛∗𝑝 is the matrix that hints at 

membership in the community, and Tr (0) is the 

trace function. The solution is to obtain p of the 

most significant specific vector of modularity 

matrix B. In addition, the solution space allows Ψ 

reconstruction of network topology from a 

community structure viewpoint. Therefore, any 

row of the Ψ matrix can be assumed to be a good 

representation of the corresponding node in the 

hidden space to detect the community. 

3.4.2-Normalize cut model:  

This model calculates the ratio of external edges to 

internal edges, providing a measure of community 

separation. To compute a normalized cut, the cut 

between clusters A and B, denoted as Cut (A, B), 

represents the total number of edges that connect 

nodes in different clusters. The volume of cluster 

AA, represented as Vol (A), is the sum of the 

degrees of all nodes within cluster A [52]. These 

values are determined using equations (5) and (6): 

𝑐𝑢𝑡(𝐴, 𝐵) = ∑ 𝑤𝑖𝑗𝑖∈𝐴,𝑗∈𝐵                                    (5) 

𝑉𝑜𝑙(𝐴) = ∑ 𝑘𝑖𝑖∈𝐴                                                (6) 

Given equations (5) and (6), the objective 

function of the normalized cut for two clusters, A 

and B, will be equation (7) or equation (8) when 

there are k clusters C1, C2 … Ck. 

𝑁𝑐𝑢𝑡(𝐴, 𝐵) =
𝑐𝑢𝑡(𝐴,𝐵)

𝑣𝑜𝑙(𝐴)
+

𝑐𝑢𝑡(𝐴,𝐵)

𝑣𝑜𝑙(𝐵)
                 (7) 

𝑁𝑐𝑢𝑡(𝐶1, 𝐶2, … , 𝐶𝑘) = ∑
𝑙𝑖𝑛𝑘(𝐶𝑡,𝐶�̅�)

𝑣𝑜𝑙(𝐶𝑡)
𝑘
𝑡=1        (8) 

Where 𝑙𝑖𝑛𝑘(𝐶𝑡, 𝐶�̅�) =
1

2
∑ 𝑆𝑖𝑗𝑖∈𝐶𝑡,𝑗∈𝐶𝑡̅̅ ̅   is the total 

connection from nodes in Ct to all nodes in 𝐶�̅� (not 

in𝐶𝑡) and 𝑣𝑜𝑙(𝐶𝑡) = ∑ 𝑑𝑖𝑖∈𝐶𝑡
  is the total internal 

connection in 𝐶𝑡. 

To achieve the minimum objective function, the 

normalized cut is wrapped in an optimization 

problem as per Equation (9), where L is the 

Laplacian graph matrix of similarity and its 

normalized form  𝐷−1𝐿 = 𝐷−1(𝐷 − 𝑆) = 𝐼 − 𝐷−1𝑆 is 

the identity matrix (I). Equation (10) is known as 

the Markov matrix: 

𝑚𝑖𝑛   𝑇𝑟(∅𝑇𝐿∅) 

∅ ∈ 𝑅𝑛∗𝑘 

S.t     L=D-S 

D= 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, … , 𝑑𝑛)                         (9) 

∅𝑖𝑗 = {

1

√𝑣𝑜𝑙(𝐶𝑗)

  if 𝑣𝑖 ∈ 𝐶𝑗

0              otherwise

 

 

M=𝐷−1𝑆                                          (10)    

 In the case of this problem, the solution matrix ∅ 

of the specific vectors of k is the minimum nonzero 

particular value of the normalized Laplacian 

matrix 𝐷−1𝐿. In other words, k is the most 

significant specific value M covers, representing 

the solution in the hidden space. More importantly, 

the solution matrix Φ provides a perfect 

representation for obtaining the clustering. 

Given the above, a higher modularity leads to a 

better partition structure; conversely, a lower 

normalized cut value enhances the two critical 

principles of graph classification, namely 

maximum integrity and minimum connection. 

3.5. Graph embedding:  

Let G= (V, E, X), where 𝑉 = {𝑣𝑖} 𝑖 = 1,2, . . , 𝑛 is 

formed of a set of graph nodes and 𝑒𝑖𝑗 =< 𝑣𝑖, 𝑣𝑗 >

∈ 𝐸 represents a connection between the nodes. 

The topological structure of graph G is illustrated 

by adjacency matrix A, where 𝐴𝑖𝑗 = 1  if eij ∈ E 

and otherwise 𝐴𝑖𝑗 = 0.  𝑋 ∈ 𝑅𝑛∗𝑑 is the node 

attribute matrix, and d is the number of attributes. 

In addition, 𝑥𝑖 ∈ 𝑋 shows the attributes of the 

content of each node 𝑣𝑖 . The objective of the 

embedding problem is to map nodes 𝑣𝑖 ∈ 𝑉 to low-

dimensional vectors  𝑧𝑖 ⃗⃗⃗⃗⃗⃗ ∈ 𝑅𝑑, with a formal 

format 𝑓: (𝐴, 𝑋) → 𝑍, where 𝑧𝑖
𝑇 is the-i row of the 

𝑍 ∈ 𝑅𝑛∗𝑑 matrix (n is the number of nodes, and d 

is the packing dimension). We assume that Z is the 

packing matrix, so the packings should preserve A's 

topology and content information, X. 

3.6. Notations:  
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Table 1 consolidates the essential symbols used 

throughout this paper, encompassing various 

matrices, graph properties, and representation 

details relevant to the discussed methods. This 

table serves as a reference for understanding the 

notations and mathematical formulations 

employed in our approach. 

4. The proposed method: VGAEE 

Our proposed model is designed to detect 

communities within attributed social networks by 

utilizing a parallel dual graph convolutional neural 

network (GCN) for an efficient and interpretable 

embedding process. The model is structured into 

four distinct phases: 

1. Graph Filtering: This initial phase filters 

the graph to prepare it for further 

processing, enhancing the clarity of the 

underlying structures within the network. 

2. Modularity and Markov Matrices 

Calculation: The second phase calculates 

modularity and Markov matrices, which 

are crucial for understanding the 

community structure and the transition 

probabilities between nodes. 

3. Network Embedding: During the third 

phase, a Variational Graph AutoEncoder 

is employed to generate a new and 

meaningful representation of the network. 

This step is pivotal for capturing the 

essence of community structures in a 

lower-dimensional space. 

4. Clustering: The final phase involves 

clustering the embedded representations 

to identify distinct communities within 

the network. This step categorizes nodes 

into groups based on the learned 

embeddings. 

The output from each phase is meticulously 

designed to feed into the subsequent phase as input, 

ensuring a smooth transition and integration of data 

throughout the model. Fig. 1 provides a detailed 

schematic of the proposed method, visually 

outlining each phase and their interconnections. 

The upcoming sections will explore the intricacies 

and functionalities of each phase in greater detail, 

offering a comprehensive understanding of our 

approach. 

 

4.1. Graph Filtering 

By implementing the k-core algorithm, we 

strategically streamline the graph by removing 

nodes of lesser significance, typically those with 

low degrees. This method significantly reduces the 

graph’s size and complexity, enhancing the 

efficiency of community detection algorithms 

applied thereafter. The k-core algorithm highlights 

the graph’s most prominent regions, facilitating 

more focused and faster computations. Essentially, 

a k-core represents a maximal subset of a graph’s 

nodes where each node maintains at least k 

connections within that subset. For inclusion in the 

k-core, a node’s degree within the subset must be 

no less than k. The process involves calculating the 

k-core by first removing nodes with degrees less 

than k, then recalculating the degrees, and 

iteratively repeating this removal process until all 

nodes satisfy the k-core condition. Each iteration 

carries a computational complexity of O(E), where 

E denotes the total number of edges.  

Through successive iterations, the graph is 

methodically reduced by excluding nodes lacking 

sufficient connectivity, ultimately yielding a 

simplified core that depicts the most interconnected 

nodes. As delineated in this section, the k-core 

algorithm inherently defines a community based on 

its density, thereby reducing the overall graph 

size—this accelerates the community detection 

process in subsequent phases and bolsters the 

community-centric focus of graph neural networks. 

The choice of k in this algorithm is contingent upon 

the specific dataset being analyzed; in this study, a 

k-value of 3 was selected based on a trial-and-error 

method to optimize the balance between 

simplification and structural integrity. 

4.2. Calculation of the modularity matrix and 

normalized cut matrix 

This section details the calculation of the 

modularity matrix (Matrix B) and the Markov 

matrix (Matrix M) for the filtered graph, a product 

of applying the 3-core algorithm. These 

calculations are fundamental for understanding the 

structural and transitional properties of the graph 

and are crucial for subsequent analyses, such as 

community detection or dynamic behavior studies.
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Table 1: List of notations used in this paper 

Descriptions Symbols Descriptions Symbols 

A similarity matrix S Graph adjacency matrix A 

)j; vivThe modularity value of ( ijB Graph attribute matrix X 

The modularity evaluation metric Q Number of nodes in the graph N 

The pairwise node similarity 

)j; vivvalue of ( 

ijS Representations of nodes Z 

A degree matrix D Hidden dimensions H 

A Laplacian matrix L Reconstructed graph adjacency matrix �̅� 

A modularity matrix B Number of communities in the graph K 

A Markov matrix M Feature representation at layer i+1 𝐻[𝑖+1] 

Feature representation at layer i 𝐻𝑖 The  Activation function 𝜎(0) 

Based on layer i 𝑏𝑖 Weight at layer i 𝑊𝑖 

 

 

Fig. 1: Flowchart of the proposed method VGAEE 
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4.3. Network embedding 

The learning phase aims to achieve a robust 

embedding of the data graph G= (V, E, A, X). To 

accomplish this, we employ a Variational Graph 

Autoencoder (VGA), which processes the entire 

graph to learn an effective embedding. As depicted 

in Figure 2, the workflow for this processing 

method involves two primary components: the 

encoder and the decoder. 

Encoder: In a Variational Graph Autoencoder, the 

encoder's role is pivotal. It takes two inputs: the 

adjacency matrix A, representing the graph's 

structure, and the node features matrix X. The 

encoder's task is to map this high-dimensional 

input data into a lower-dimensional latent 

representation Z. This latent space Z captures the 

essential features of the nodes while preserving the 

structural and feature-based relationships inherent 

in the graph. Typically, the encoder uses layers of 

graph convolution to aggregate and transform the 

input data into this compact representation. This 

step is crucial as it determines how well the encoder 

can identify and encode community-specific 

features into the latent space. 

Decoder: Following the encoding process, the 

decoder takes the latent representation Z and aims 

to reconstruct the original graph's structure. The 

primary objective of the decoder is to validate the 

effectiveness of the learned embeddings by 

attempting to regenerate the adjacency matrix A 

from Z. This process tests the encoder's ability to 

embed nodes in such a way that the original graph 

structure can be predicted from the embeddings. A 

successful reconstruction indicates that the latent 

space Z contains meaningful and comprehensive 

information about the graph's structure and node 

interactions. 

The Variational Graph Autoencoder's effectiveness 

hinges on its ability to reduce the dimensionality of 

the graph data while retaining significant structural 

and feature-related information. This capability is 

crucial for tasks such as community detection, 

where the goal is to cluster similar nodes more 

effectively. By embedding nodes into a lower-

dimensional space that emphasizes community-

specific features, the Variational Graph 

Autoencoder facilitates more accurate and efficient 

community clustering. This method not only 

streamlines computations but also enhances the 

interpretability of the results, allowing for clearer 

insights into the underlying community structure of 

the graph. 

4.3.1. Encoder Model 

The encoder (inference model) of VGAE consists 

of graph convolutional networks (GCNs) [51]. It 

takes an adjacency matrix A and a feature 

matrix X as inputs and generates the latent 

variable Z as output. The first GCN layer 

transforms the feature matrix into a lower-

dimensional form as defined by Equation 11:   

 

  �̅� = 𝐺𝐶𝑁(𝑋, 𝐴) = 𝑅𝑒𝐿𝑈(𝐴 ̃𝑋𝑊0)     (11) 
                                                                           

𝐴 ̃ = 𝐷−
1

2 𝐴 𝐷 −
1

2  

A-tilde is the symmetrically normalized adjacency 

matrix. The second GCN layer generates μ and 

logσ², which are defined by Equation 12: 

𝜇 = 𝐺𝐶𝑁𝜇(𝑋, 𝐴) = 𝐴 ̃�̅�𝑊1            (12)  

 logσ² = 𝐺𝐶𝑁𝜎(𝑋, 𝐴) = 𝐴 ̃�̅�𝑊1 

Now if we combine the math of two-layer GCN as 

defined in Equation 13, yields: 

𝐺𝐶𝑁(𝑋, 𝐴) = 𝐴 ̃𝑅𝑒𝐿𝑈(𝐴 ̃𝑋𝑊0)𝑊1          (13) 

Which generates μ and logσ². Subsequently, Z can 

be determined using the parameterization trick, as 

specified in Equation 14:  

𝑍 = 𝜇 + 𝞼 ∗ Ɛ      Where ε ~ N (0, 1).     (14) 

4.3.2. Decoder Model 

The decoder (generative model) is defined by an 

inner product between latent variable Z. The output 

of our decoder is a reconstructed adjacency 

matrix A-hat, which is defined as Equation 15: 

�̂� = 𝜎(𝑧𝑧𝑇)                                        (15) 

Where σ(•) is the logistic sigmoid function. In 

summary, the encoder is represented as Equation 

16: 

𝑞(𝑧𝑖|𝑋, 𝐴) = 𝑁(𝑧𝑖|𝜇𝑖 , 𝑑𝑖𝑎𝑔(𝜎2))         (16)

(13) 

 

      (14)    

 

          (16) 

 

https://tkipf.github.io/graph-convolutional-networks/
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Fig. 2: The workflow scheme of the Variational graph autoencoder in the proposed method 

 

 

Fig. 3: The VGAEE Framework for Community Detection in Attributed Social Networks. 

The decoder is represented in Equation 17: 

𝑝(𝐴𝑖𝑗 = 1|𝑧𝑖, 𝑧𝑗) = 𝜎(𝑧𝑖
𝑇𝑧𝑗)               (17) 

In this paper, the encoder, a linear combination of 

the matrices Q and M is initially computed, which 

can be considered as the new input feature matrix 

Xnew: 

Xnew Q M                                  (18) 

Where α and β are coefficients for the combination. 

This Xnew is then fed into Graph Convolutional 

Networks (GCN): The first GCN layer produces a 

lower-dimensional feature representation: 

0( ) ( )1 ,new newX GCN X A ReLU AX W  

where A is the symmetrically normalized 

adjacency matrix. 

The second GCN layer generates the values μ and 
2log : 1( , )GCN X A AX W     

𝑙𝑜𝑔𝜎2 = 𝐺𝐶𝑁𝜎(𝑋, 𝐴) = 𝐴 ̃𝑋 ̅ 𝑊1 

The decoder then uses these parameters to 

reconstruct the adjacency matrix:  

2( )A sigmoid AX W  Where W  are the 

weights associated with the decoder. Using the 

reparameterization trick: Z    (0,1)Nò  

is a random variable from the standard normal 

distribution. These adjustments ensure that the 

combined inputs are accurately reflected in the 

model, allowing for more precise and complex 

community structure identification. 

4.3.3. Loss function and Optimization 

The loss function for the Variational Graph 

Autoencoder remains largely unchanged and is 

defined in Equation 18. It comprises primarily of 

the reconstruction loss between the input adjacency 

matrix and the reconstructed adjacency matrix. 
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More specifically, this involves the binary cross-

entropy between the target (A) and the output (A′) 

logits. The second part is the KL divergence 

between q(Z | X, A) and p (Z), where p (Z) = N (0, 

1). It measures how closely our q(Z | X, A) matches 

p (Z). 

After we get the latent variable Z, we want to find 

a way to learn the similarity of each row in the 

latent variable (because one row represents one 

vertex) to generate the output adjacency matrix. 

The inner product could calculate the cosine 

similarity of two vectors, which is useful when we 

want a distance measure that is invariant to the 

magnitude of the vectors. Therefore, by applying 

the inner product on the latent variable Z and Z^T, 

we can learn the similarity of each node inside Z to 

predict our adjacency matrix. 

𝐿 = 𝐸𝑞(𝑍|𝑋, 𝐴)[𝑙𝑜𝑔𝑝(𝐴|𝑍)] − 𝐾𝐿[𝑞(𝑍|𝑋, 𝐴)||𝑝(𝑍)] 

The proposed decoding model is used to 

reconstruct graph data. We can reconstruct a graph 

structure, content information X, or both. Here, 

reconstruction of the graph structure is 

recommended, which gives us a higher level of 

flexibility so our algorithm preserves its 

functionality even if content information X is 

unavailable. Decoder 𝑝(�̂�|𝑍) predicts whether 

there is a connection between the two nodes of a 

connection. Specifically, we trained a connection 

prediction layer based on graph embedding as per 

Equation 19 and Equation 20. 

𝑝(�̂�|𝑍) = ∏ ∏ 𝑝(�̂�𝑖𝑗 |𝑧𝑖 ,𝑧𝑗 )
𝑛
𝑗=1

𝑛
𝑖=1          (19)               

𝑝(�̂� 𝑖𝑗 = 1|𝑧𝑖 ,𝑧𝑗 ) = 𝑠𝑖𝑔𝑚𝑜𝑑(𝑧𝑖 
𝑇 , 𝑧𝑗 )  (20) 

The embedding of Z and �̂� Reconstructed graphs 

are given in Equation 21:  

�̂� = 𝑠𝑖𝑔𝑚𝑜𝑑(𝑍𝑍𝑇), ℎ𝑒𝑟𝑒 𝑍 = 𝑞(𝑍|𝑋, 𝐴)         (21) 

                            

The graph data reconstruction error for a self-

encoder graph is minimized using Equation 22. 

ℒ0 = 𝐸𝑞(𝑍|(𝑥,𝐴))[𝑙𝑜𝑔𝑝(�̂�|𝑍)              (22) 

4.4. Node clustering:  

In this phase of processing, min-max scaling is 

applied to normalize the Z_final feature vectors 

that were obtained in the previous phase. This 

normalization technique adjusts the data values so 

that they range between zero and one. The 

objective of using min-max scaling in this context 

is to standardize the range of the feature vectors, 

thus ensuring that no single feature dominates due 

to its scale. This uniform scaling across all features 

is essential for several reasons: 

1. Enhanced Algorithm Performance: 

Uniformity in feature scale helps machine 

learning algorithms converge more 

quickly. This is particularly important for 

algorithms like K-nearest neighbors 

(KNN), which rely on distance 

calculations between points. If the scales 

are not uniform, features with larger ranges 

could disproportionately influence the 

outcome, leading to biased results. 

2. Improved Stability: Algorithms that 

depend on distance measurements or 

gradients are less likely to exhibit erratic 

behavior during learning when all features 

contribute equally. Stability in algorithm 

performance leads to more reliable and 

reproducible results. 

3. Optimized Learning Efficiency: When all 

features are scaled uniformly, each feature 

has an equal opportunity to influence the 

learning process, potentially increasing the 

efficiency and effectiveness of the model. 

Applying min-max scaling to the Z_final feature 

vectors ensures that the subsequent steps, 

especially those involving algorithms like KNN for 

clustering or classification, operate under optimal 

conditions. This preprocessing step is crucial for 

achieving accurate and efficient outcomes in the 

analysis of data, particularly in complex machine-

learning tasks that involve large and diverse 

datasets. The decoder is represented in Equation 

17: 

𝑝(𝐴𝑖𝑗 = 1|𝑧𝑖, 𝑧𝑗) = 𝜎(𝑧𝑖
𝑇𝑧𝑗)               (17) 

Fig. 4 illustrates the architecture of our proposed 

community detection model using VGAEE. 

5. Experiment 

In this section, we describe the comprehensive 

experiments conducted to evaluate the 

performance of the Variational Graph Autoencoder 

Embedding Enhancer (VGAEE) against state-of-

the-art methods in real-world scenarios using valid 

datasets. These experiments are designed to 

provide a fair and rigorous comparison, focusing 

on several critical aspects:
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5.1. Experimental settings 

  5.1.1. Datasets 

In our study, we utilized datasets derived from 

real-world applications to test our community 

detection methods, ensuring a thorough evaluation. 

Statistical information about the three datasets 

employed is presented in Table 4, reference [57]. 

These datasets comprise citation networks where 

the nodes symbolize papers and the edges denote 

the citations between them. Each node is associated 

with attributes that represent word packet 

summaries of the paper abstracts, while the labels 

indicate the topics of the papers. 

 5.1.2. Evaluation metrics 

This section presents various qualitative metrics for 

evaluating community detection approaches, 

classified into performance and goodness 

measures. Performance measures assess the quality 

of the communities identified by the algorithm 

relative to real-world communities. Additionally, 

goodness measures focus on the structural 

characteristics of the communities that have been 

detected [60]. Our evaluation of the proposed 

method utilized two key metrics: normalized 

mutual information and accuracy. Higher values in 

these metrics signify better performance. 

Subsequent sections will provide a detailed 

discussion of these measures. 

-Normalized Mutual Information 

The normalized mutual information, calculated 

using equation (26), measures the similarity 

between the community set identified by the 

proposed algorithm and the actual community [60]. 

𝑁𝑀𝐼 =
∑ ∑ 𝑛𝑖𝑗𝑙𝑛 (𝑛𝑖𝑗

𝑘
𝑗=1

𝑘
𝑖=1 .𝑛/𝑛𝑖

𝑐.𝑛𝑗
𝑐)

√(∑ 𝑛𝑖
𝑐 𝑙𝑛(

𝑛𝑖
𝑐

𝑛
)𝑘

𝑖=1 )(∑ 𝑛𝑗
�́�𝑘

𝑗=1  𝑙𝑛 (𝑛𝑗
�́�/𝑛))

                   (26) 

             

Where k is the number of communities, n is the 

number of nodes, nij is the number of nodes in the 

optimized community set i such that the proposed 

community set is in community j, 𝑛𝑖
𝑐 is the number 

of nodes in the community i, which is in the 

optimized community set, and 𝑛𝑗
𝑐 is the number of 

nodes in community j. 

-Accuracy 

It assesses the authenticity of the community 

structure. Similar to NMI, computing this measure 

necessitates the use of an optimal community 

setting, as outlined in equation (27) [60]. 

ACC = 
∑ 𝑘𝑛

𝑖=1 (𝐶𝑖,𝑃𝑀(�́�𝑖))

𝑛
                    (27) 

Where n is the number of groups, and for a specific 

group, i and 𝐶𝑖 ،�́�𝑖 are the communities of node i in 

optimum and recommended community settings. 

K(x, y) is a function equal to 1 when x=y and 0 

otherwise. 

5.1.3. Parameter Settings: 

For our study, we structured the training set by 

selecting 20 nodes from each class, resulting in a 

total of 500 nodes for the validation set and 1,000 

nodes for the test set. Our experiments were 

conducted using a two-layer Graph Convolutional 

Network (GCN) setup. The initial layer included 64 

neurons, with each subsequent layer in the 

contracting path halving the neuron count from the 

previous layer. The training was facilitated using 

the Adam optimizer, a popular choice due to its 

efficiency, and the experiments were carried out 

using both TensorFlow and PyTorch frameworks. 

The learning rate was initially set at 0.01, adjusted 

dynamically by a scheduler that reduced the rate 

upon encountering a loss plateau, which helped 

achieve more stable convergence. We implemented 

a dropout rate of 0.5 to prevent overfitting and 

capped the training at a maximum of 200 epochs. 

The Relu activation function was applied following 

each graph convolutional operation. Training was 

halted if there was no decrease in the loss function 

over 10 consecutive epochs. 

Initialization of the initial weights for the two GCN 

layers was done randomly, selected from a uniform 

distribution. To ensure the robustness of our 

results, each experiment was repeated ten times, 

with the average scores reported subsequently. 

Detailed parameter settings for these experiments 

are summarized in Table 5, which includes 

parameter names and their respective values. 

5.1.4. Experimental results and analysis 

This subsection presents the experimental results 

analyzed from various evaluation angles to validate 

the efficiency of our proposed model. We 

conducted experiments using medium-scale 

datasets including Cora, Citeseer, and PubMed, 

and compared our model against three established 

baseline categories to provide a thorough analysis. 

The comparison categories are detailed as follows: 

1. Node Feature-Based Methods: This 

category focuses on the unique attributes 
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or characteristics of individual nodes. 

Methods such as k-means and spectral 

clustering, referred to here as spectral_f, 

are prominent in this category. These 

methods construct a similarity matrix 

primarily using a linear kernel based on 

node features. 

2. Graph Structure-Based Methods: This 

category emphasizes the intrinsic structure 

of the graph. Techniques like spectral 

clustering (Spectral_g) utilize the node 

adjacency matrix to build the similarity 

matrix. Notable methods in this group 

include DeepWalk [14], which excels in 

learning graph embeddings, and DNGR 

[62], which merges spectral graph 

clustering with deep neural networks for 

complex graph representation. 

Additionally, vGraph [63] is a probabilistic 

generative model that learns community 

membership and node representation 

collaboratively, while Graph Encoder [64] 

focuses on learning graph embedding for 

spectral graph clustering. 

3. Hybrid Methods: These methods 

integrate both node attributes and graph 

structure, typically resulting in enhanced 

community detection outcomes despite 

increased computational complexity. 

Various graph autoencoder variants fall 

within this category, including: 

o GAE [65]: Utilizes neural networks 

for learning graph representations. 

o VGAE [65]: Advances GAE by 

implementing a Variational 

inference framework. 

o MGAE [18]: Enhances 

representation by marginalizing 

specific graph properties. 

o ARGA [66] and ARVGA [66]: 

Employ adversarial and vibrational 

regularization, respectively, to 

refine graph embeddings. 

o DAEGC [67]: Uses deep 

autoencoders to reconstruct the 

graph's adjacency matrix. 

o AGE [56]: Enhances graph-based 

learning tasks through a two-stage 

process. 
o AGC [55]: Leverages high-order graph 

convolution to effectively understand a 

graph's global structure. 

o DBGAN [68] and GALA [69]: New 

approaches using graph neural networks 

for clustering and embedding node 

features. 

o CommDGI [11] and GC-VGE [70]: 

Optimize the simultaneous learning of 

node embeddings and cluster assignments. 

o TADW [71]: Employs matrix 

factorization for network representation 

learning. 

o RMSC [72] and RTM [72]: Focus on 

robust multi-view spectral clustering and 

learning topic distributions from text and 

citations, respectively. 

o GMIM [73]: Utilizes a mutual information 

maximization approach for node 

embedding. 

o DGVAE [74]: Introduces a graph 

Variational generative model with 

Dirichlet distributions as priors on latent 

variables. 

o BernNet GCN [75] and WC-GCN [76]: 

Utilize graph convolutional network 

frameworks, with the former based on 

Bernstein polynomial approximation. 

o LGNN [35] and MRFasGCN [27]: 

Specialized neural network models for 

graph data, with MRFasGCN combining 

GCN with a Markov random field model 

for community detection. 

These methods provide a broad spectrum of 

approaches for analyzing and detecting community 

structures within networks, facilitating a 

comprehensive comparison against our proposed 

model. 

 

Tables 6-8 comprehensively compare the proposed 

method with baseline community detection 

methods based on their performance metrics. These 

metrics include accuracy (ACC %) and normalized 

mutual information (NMI %). The compared 

approaches are often categorized into three groups 

based on the type of learning: supervised, semi-

supervised, and unsupervised. Furthermore, these 

strategies are classified into three groups based on 

the input type: Features, graph topology, or a 

hybrid of both. 

Table 6 presents a comprehensive comparison of 

various graph-based learning methods used for 

community detection in the Cora dataset, 

highlighting their performance in terms of accuracy 

(ACC %) and normalized mutual information 

(NMI %). Among the methods listed, the proposed 

VGAEE stands out with the highest performance 

metrics, achieving an ACC% of 84.5 and an NMI% 

of 70.46. This represents a significant improvement 

over both supervised and unsupervised approaches. 

For instance, the closest competitors, MRFasGCN 
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and AGE, which are also unsupervised, recorded 

ACC% of 84.3 and 76.8 and NMI% of 66.2 and 

60.7, respectively. VGAEE's superior performance 

suggests that its methodology for integrating graph 

topology in an unsupervised learning framework 

effectively captures the nuanced structures within 

the community more accurately than other 

methods. Furthermore, the results from VGAEE 

are particularly notable when compared to 

supervised methods such as LGNN and WC-GCN, 

which, despite their structured learning paradigms, 

do not achieve the same level of ACC or NMI. 

Overall, the data underscores the efficacy of 

VGAEE in community detection, setting a new 

benchmark for future studies in this area. 

To make a fair comparison with other related 

works, we repeated the experiments on two 

different datasets, the PubMed dataset and the 

Citeseer dataset. We present the results and figures 

of this new evaluation in Tables 7 and 8, 

respectively.  

In Table 7, the proposed VGAEE method outshines 

both unsupervised and supervised learning 

algorithms for the PubMed dataset, registering an 

ACC% of 80.50 and an NMI% of 55.60. This 

significantly distances it from traditional 

unsupervised methods like K-means, Spectral-F, 

and Spectral-G, which show considerable 

variability in their results. When comparing 

VGAEE with other advanced graph-based 

methods, it still maintains a leading position. For 

example, the semi-supervised MRFasGCN 

achieves a higher NMI% at 40.7 but falls short in 

ACC%, illustrating that while it effectively 

captures mutual information within the data, it does 

not necessarily translate to outright accuracy. 

Similarly, the supervised BernNet GCN scores an 

impressive NMI% of 51.40 but with a lower 

ACC% of 61.25, indicating potential overfitting to 

mutual information at the cost of general accuracy. 

Among unsupervised competitors, AGE and 

GMIM perform well, with AGE reaching an 

ACC% of 71.1 and GMIM peaking at 70.87, yet 

neither approaches the combined performance 

metrics of VGAEE. Additionally, methods like 

AGC and CommDGI, while competitive, do not 

achieve the same balance between ACC and NMI, 

suggesting that VGAEE's method of integrating 

features and graph topology potentially offers a 

more robust model for understanding complex 

network structures. Overall, the superiority of 

VGAEE in this dataset underscores its 

effectiveness in handling the nuances of 

community detection in large, complex networks. 

Its ability to outperform existing algorithms, 

particularly in unsupervised settings, sets a new 

benchmark and indicates promising directions for 

future research and application in social network 

analysis and beyond. 

Based on the analysis presented in Table 8, the 

table showcases the performance of the VGAEE 

method relative to other community detection 

algorithms across various learning paradigms for 

the Citeseer dataset. VGAEE, an unsupervised 

method, stands out with an ACC% of 75.60 and an 

NMI% of 57.06. Notably, VGAEE surpasses 

popular unsupervised algorithms like K-means, 

Spectral-F, and DeepWalk, which present 

considerably lower metrics in both accuracy and 

mutual information. Even when compared to the 

semi-supervised MRFasGCN and supervised 

methods such as BernNet GCN and WC-GCN, 

VGAEE demonstrates competitive or superior 

performance, particularly in accuracy. This 

highlights VGAEE's efficacy in effectively 

capturing and preserving the intrinsic community 

structures in complex networks without requiring 

labeled data. Positioned as a robust tool in the 

unsupervised learning landscape for graph-based 

community detection, VGAEE excels in handling 

unlabeled and complex datasets while maintaining 

a balance between accuracy and information 

preservation. 

The proposed VGAEE method demonstrated 

outstanding results across all three datasets: Cora, 

PubMed, and Citeseer, with its performance being 

particularly notable on the Citeseer dataset. On 

Citeseer, it achieved the highest accuracy and NMI 

percentages among all methods evaluated, with 

scores of 75.60% and 57.06% respectively. While 

it also ranked among the top performers on the 

Cora and PubMed datasets, with accuracies of 

84.5% and 80.5% respectively, the Citeseer results 

highlight its superior capability in community 

detection within various network analyses. This 

underscores the VGAEE method's robust 

adaptability and effectiveness across diverse and 

complex datasets, marking it as a potent tool for 

intricate network analysis tasks. Figures 4, 5, and 6 

illustrate the performance of the proposed method 

on the Cora, PubMed, and Citeseer datasets, 

respectively, based on the ACC (classification 

accuracy) and NMI (normalized mutual 

information) metrics, compared to baseline 

methods. In all three figures, the ACC and NMI 

values for the proposed method are highlighted in 

bold above the corresponding bars to clearly 

demonstrate its superiority over other methods.
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  Table 4: Summary of real-world benchmarks on datasets. 

 

 

 

 

 

 

 
 

Table 5: Detailed parameter setting 

Datasets Training 

Epoch 

Learning 

rate 

Activation 

Function 

Weight 

Decay 

Optimizer GCN 

layers 

Dropout 

rate  

#Train/Validation  

/Test Node  

Cora 200 0.01 Relu 5e-3 Adam 64/32 0.5 140/500/1000 

Citeseer 200 0.01 Relu 5e-3 Adam 64/32 0.5 120/500/1000 

PubMed 200 0.01 Relu 5e-3 Adam 64/32 0.5 60/500/1000 

 

Table 6: Performance comparison of different community detection methods on the Cora dataset; the best results are in bold. 

Name of methods Learning type Input ACC% NMI% 

K-means Unsupervised Feature 49.2 32.1 

Spectral-F [77] Unsupervised Feature 34.7 14.7 

Spectral-G [77] Unsupervised Graph 31.46 9.69 

DeepWalk [14] Unsupervised Graph 56.20 39.87 

Graph Encoder [78] Unsupervised Graph 32.5 10.9 

vGraph[63] Unsupervised Graph 28.7 34.5 

TADW [71] Unsupervised Feature & Graph 55.00 36.59 

VGAE [65] Unsupervised Feature & Graph 63.56 47.45 

MGAE [18] Unsupervised Feature & Graph 63.43 45.57 

ARGE [66] Unsupervised Feature & Graph 60.84 42.21 

ARVGA [66] Unsupervised Feature & Graph 62.83 45.93 

DGVAE [74] Unsupervised Feature & Graph 64.42 47.64 

AGC [55] Unsupervised Feature & Graph 68.92 53.68 

CommDGI [11] Unsupervised Feature & Graph 69.8 57.9 

DAEGC [67] Unsupervised Feature & Graph 70.4 52.8 

GC-VGE [70] Unsupervised Feature & Graph 70.67 53.57 

GALA [69] Unsupervised Feature & Graph 72.42 53.96 

DBGAN [68] Unsupervised Feature & Graph 74.6 57.7 

GMIM [73] Unsupervised Feature & Graph 74.8 56.0 

AGE[56] Unsupervised Feature & Graph 76.8 60.7 

MRFasGCN[27] Semi-supervised Feature & Graph 84.3 66.2 

BernNet GCN[75] Supervised Feature & Graph 41.06 68.78 

LGNN[35] Supervised Feature & Graph 79.04 - 

WC-GCN[76] Supervised Feature & Graph 79.39 - 

VGAEE(proposed method) Unsupervised 

 

Feature & Graph 84.5 70.46 

Num. of Communities #Node Attributes #Edges #Nodes Dataset 

7 1,433 5,429 2,708 Cora [58] 

6 3,703  4,715 3,312 Citeseer [58] 

3 500 44,338 19,717 PubMed [59] 
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Table 7: Performance comparison of different community detection methods on the PubMed dataset; the best results are in 

bold. 

Name of methods Learning type Input ACC% NMI% 

K-means Unsupervised Feature 55.59 24.34 

Spectral-F [77] Unsupervised Feature 60.20 30.90 

Spectral-G [77] Unsupervised Graph 37.98 10.30 

DeepWalk [14] Unsupervised Graph 64.98 26.44 

Graph Encoder[11] Unsupervised Graph 53.1 20.9 

DNGR [62] Unsupervised Graph 25.53 20.11 

vGraph [79] Unsupervised Graph 26.00 22.40 

TADW [71] Unsupervised Feature & Graph 46.82 9.47 

GAE [65] Unsupervised Feature & Graph 64.43 24.85 

VGAE [65] Unsupervised Feature & Graph 64.67 23.94 

MGAE [18] Unsupervised Feature & Graph 43.88 8.16 

ARGA [66] Unsupervised Feature & Graph 65.07 29.23 

ARVGA [66] Unsupervised Feature & Graph 62.01 26.62 

DGVAE [74] Unsupervised Feature & Graph 67.56 28.72 

AGC [55] Unsupervised Feature & Graph 69.78 31.59 

CommDGI [11] Unsupervised Feature & Graph 69.90 35.70 

DAEGC [67] Unsupervised Feature & Graph 67.10 26.60 

GC-VGE [70] Unsupervised Feature & Graph 68.18 29.70 

GALA [69] Unsupervised Feature & Graph 69.39 32.73 

DBGAN [68] Unsupervised Feature & Graph 69.40 32.40 

GMIM [73] Unsupervised Feature & Graph 70.87 32.43 

AGE[56] Unsupervised Feature & Graph 71.1 31.6 

MRFasGCN[27] Semi-supervised Feature & Graph 79.6 40.7 

BernNet GCN[75] Supervised Feature & Graph 61.25 51.40 

LGNN[35] Supervised Feature & Graph 72.64 - 

WC-GC[76] Supervised Feature & Graph 79.41 - 

VGAEE(proposed method) Unsupervised Feature & Graph 80.50 55.60 

 

Table 8: Performance comparison of different community detection methods on the Citeseer dataset. The best results are in 

bold. 

Name of methods Learning type Input ACC% NMI% 

K-means Unsupervised Feature 54.0 30.5 

Spectral-F [77] Unsupervised Feature 23.9 5.6 

DeepWalk [14] Unsupervised Graph 32.7 8.8 

Graph Encoder[11] Unsupervised Graph 22.5 3.3 

DNGR [62] Unsupervised Graph 32.6 18.0 

RTM [72]  Unsupervised Graph 45.1 23.9 

RMSC [72] Unsupervised Graph 29.5 13.9 

TADW [71] Unsupervised Feature & Graph 45.5 29.1 

GAE [65] Unsupervised Feature & Graph 40.8 17.6 

VGAE [65] Unsupervised Feature & Graph 34.4 15.6 

MGAE [18] Unsupervised Feature & Graph 43.88 8.16 

ARGA [66] Unsupervised Feature & Graph 57.3 35.0 

ARVGA [66] Unsupervised Feature & Graph 54.4 26.1 



Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks 

19 

 

AGE[56] Unsupervised Feature & Graph 70.2 44.8 

MRFasGCN[27] Semi-supervised Feature & Graph 73.2 46.3 

BernNet GCN[75] Supervised Feature & Graph 72.32 58.01 

LGNN[35] Supervised Feature & Graph 73.15 - 

 Supervised Feature & Graph 73.2 46.3 

WC-GCN[76] Supervised Feature & Graph 75.18 - 

VGAEE 

(proposed method) 

Unsupervised Feature & Graph 75.60 57.06 

 

 

Fig. 4. Performance comparison of different community detection methods on the Cora dataset

 

Fig. 5. Performance comparison of different community detection methods on the PubMed dataset 
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Fig. 6. Performance comparison of different community detection methods on the Citeseer dataset

6. Conclusion and future work 

This study introduced VGAEE, an innovative 

unsupervised approach leveraging Variational 

Graph AutoEncoders to enhance community 

detection in attributed social networks. By 

integrating node content with network topology, 

VGAEE effectively captures complex community 

structures, achieving superior performance metrics 

across diverse datasets like Cora, Citeseer, and 

PubMed. Notably, VGAEE consistently 

outperformed both traditional and state-of-the-art 

methods, demonstrating its robustness and 

efficiency in handling large-scale network data 

without the necessity for pre-labeled information. 

The effectiveness of VGAEE was particularly 

evident in its ability to maintain high accuracy and 

mutual information scores, thereby providing a 

more nuanced understanding of community 

dynamics within large and complex networks. 

Looking forward, several avenues could further 

refine and expand the capabilities of the VGAEE 

framework. First, exploring the integration of semi-

supervised learning protocols could potentially 

enhance the model's accuracy and applicability to 

even broader network types, including those with 

sparse or incomplete labeling. Additionally, 

adapting the model to dynamically evolving 

networks where community structures change over 

time would significantly increase its practical 

utility in real-world scenarios. Another promising 

direction involves enhancing the model's 

scalability and efficiency through the incorporation 

of more advanced graph neural network 

architectures or optimization techniques. Lastly, 

applying the VGAEE framework to other types of 

data, such as multimodal networks or those with 

highly heterogeneous attributes, could open new 

research areas and applications, further cementing 

its utility and impact in network analysis and 

beyond. 
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1. Introduction 

Management and configuration of computer 

networks has become a difficult and vital task due 

to their complexity and dynamics. These networks 

consist of a collection of switches, routers, 

firewalls, and other intermediate devices that 

work simultaneously. Proper implementation of 

these networks is possible by operators dealing 

with a limited set of configuration commands in 

command-line environments and with complex 

administrative tasks and policies. These policies 

and complexities are not enough to react to the 

continuous changes of the network. For this 

reason, network configuration modifications are 

done manually to adapt the network to the 

changes. Operators use external tools to overcome 

these limitations, and these constant changes may 

lead to more configuration errors [1,24]. 

1.2. problem Statement  

For network management, service measurement, 

and network monitoring, traffic classification is an 

intelligent process that involves categorizing 

traffic into multiple groups. In addition, traffic 

classification enables the configuration of access 

restrictions, quality of service, and other network 

security features efficiently and allocates 

resources. Deep packet inspection and port-based 

methods are popular methods for traffic 

classification [2]. However, both of these methods 

are currently less used, as most applications use 

dynamic ports and the network communication is 

encrypted. Therefore, it is very important to 
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develop a new classification method that is more 

suitable for today's operational environment. The 

purpose of this research is to discover network 

traffic patterns with high accuracy. To extract the 

patterns, a deep learning based approach is 

proposed. 

1.3 innovation in research 

This research pushes the boundaries by exploring 

and applying advanced deep learning architectures 

such as deep neural networks (DNN), 

convolutional neural networks (CNN), recurrent 

neural networks (RNN), and attention 

mechanisms. By doing so, an attempt is made to 

provide a pioneering approach to modeling and 

understanding network traffic patterns. In 

summary, the innovative aspect of this research 

lies in its pioneering use of deep learning models 

to achieve high accuracy in discovering and 

analyzing traffic patterns in software-defined 

networks [25]. This approach has the potential to 

transform network management, security, and 

performance optimization, making it a cornerstone 

for further advancements in this field. 

2. Software networks 

Organizations have invested heavily in 

virtualization and hybrid clouds, but they still face 

challenges, including quickly allocating network 

connections while systems are running. Often 

these problems arise due to issues related to policy 

or implementation processes. 

These problems can be partially solved by 

creating virtual network infrastructure. This 

infrastructure is easily reassigned, such as when a 

new SAN or server is implemented. The idea 

behind this software-defined network 

management infrastructure, or SDN, is not that 

new and has been around for over a decade. One 

efficient definition of SDN is the separation of 

data and control functions of routers and other 

layer 2 infrastructure of conventional networks 

using a programming interface.  

2.1 PSO algorithm 

The PSO algorithm is an optimization method 

based on probability rules that was first invented 

in 1995 by Kennedy and Aberhart [3] inspired by 

the behavior of birds when searching for food. In 

this algorithm, first a set of initial answers is 

generated. Then, to find the optimal answer in the 

space of possible answers, or to time the 

generations, the answer search is done. Each 

particle is defined multidimensionally with two 

values of position and velocity, and at each stage 

of the particle's movement, with two indices of 

velocity and position, the best answers are 

determined in terms of merit for all particles. 

 

 
2.2Related works  

Basic machine learning methods that enable traffic 

classification in SDN are reviewed in this section. 

Through the use of artificial intelligence (AI), machine 

learning enables computers to recognize complex 

patterns from massive data sets on their own. 

Operationally, machine learning is divided into two 

steps: 1) training, which involves providing the 

machine learning algorithms with a subset of the data 

set (called the training set) so that the system model 

can learn from it, and 2) decision making, which is 

capable of The system is trained to predict the result of 

the new input using the model. Supervised, 

unsupervised, semi-supervised and reinforcement 

learning categories are used to group machine learning 

algorithms [4], [5] and [6]. 

Numerous machine learning methods have been 

developed over the years as a result of research efforts. 

For problems with large data sets, machine learning is 

often the most effective approach. Considering that 

machine learning techniques are designed for pattern 

recognition and data identification, they are suitable for 

solving problems in SDNs. 

3. Preposed  method 

Optimizing the parameters of convolutional neural 

networks includes determining the appropriate 

parameters, which results in significant accuracy in 

each task. However, the task of optimizing a large 

number of parameters is very difficult and 

computationally expensive. Therefore, it is necessary 

to implement optimization algorithms that reduce the 

number of iterations. The present study is based on the 

Particle Swarm Optimization (PSO) technique to find 

the CNN model with the highest accuracy for breast 

cancer detection. The development of a convolutional 

neural network (CNN) involves the optimization of 

several parameters and the precise choice of 

architecture. Choosing the optimal parameters is very 

important to obtain accurate results when using 

Convolutional Neural Networks (CNN). Therefore, it is 

a challenging task that requires a considerable level of 

expertise. 

The effectiveness of a CNN model depends on its 

meta-parametric parameters, so some researchers 

emphasize the necessity of fine-tuning these meta-

parameters to obtain positive results. Hence, it is a 

challenging task that requires a considerable amount of 

skill. The meta-parameters of the CNN architecture 

along with their descriptions are presented in Table 

1-3. Meta-heuristic algorithms are known as effective 

techniques to improve the performance of CNN 

architectures by optimizing their meta-parameters. 

 

3.2 Implementation of neural network algorithm 
optimized with particle swarm optimization algorithm 
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In this section, we build a CNN from scratch (a new 

model) to train a Convolutional Neural Network 

(CNN). It consists of three convolution layers with 

three maximum localization layers, one dropout layer, 

one flattening layer, and two fully connected (FC) 

layers. The activation function for each layer is the 

ReLU function, except for the last layer which is 

output and uses the sigmoid function. The output layer 

uses a sigmoid function that maps the output value to 

the interval [0, 1] 

 

 

 
Figure 1-3: Flowchart of neural network optimized by 

PSO 

 

4.1 evaluation criteria 

In this section, various evaluation criteria used to 

measure the performance of machine learning models 

in discovering traffic patterns in software-centric 

networks are described in detail. These criteria include 

accuracy, recall, and F1 score. Each of these metrics 

evaluates different aspects of model performance and 

provides a deeper understanding of model 

performance. 

 

 

 

 (2) 

 

  (3) 

 

4.2 Data collection 

Software-oriented networks (SDN) are one of the 

leading technologies in network management and 

control, which enable centralized control and higher 

flexibility by separating the control layer from the data 

layer. In the field of SDN, multiple datasets are used 

for various purposes, including network traffic 

analysis, attack detection, and network performance 

optimization. 

The NSL-KDD dataset is one of the most popular 

and comprehensive datasets in the field of network 

security and intrusion detection. This dataset is an 

improved dataset of KDD Cup 99 and is designed to 

address its problems and limitations. The KDD Cup 99 

dataset was introduced as one of the first and most 

comprehensive datasets in the field of intrusion 

detection. 

• Duplicate data: The presence of a large number of 

duplicate samples in the dataset, which caused the 

machine learning models to mistakenly perform very 

well. 

• Imbalance in the data: unbalanced distribution of 

different samples in the data set, which caused the 

models to tend to oversampled classes. 

 

4.3 The size of the parameters 

In this project, our main goal is to use Convolutional 

Neural Networks (CNN) and Particle Swarm 

Optimization (PSO) algorithm to discover traffic 

patterns in software-oriented networks. For this 

purpose, a set of parameters for convolutional neural 

network and PSO algorithm are considered. 

 

4.4Training settings: 

1. Initial learning rate for updating network weights. 

A low value of this parameter allows the network to be 

trained with smaller and more accurate steps. 

2. The number of complete training iterations on the 

training data. Increasing this value helps the model to 

reach higher accuracy. 

3. The number of examples in each small training 

package. This parameter helps balance between 

training speed and stability. 

 

4.5.Simulation results 

To evaluate the performance of the proposed 

method, accuracy, recall and F1-Score criteria have 

been used. 60% of the data was used for training and 

40% for testing. The results obtained from the 

evaluation of the proposed method and its comparison 

with two other references are as follows: 

 

Table 4-1: Comparison of the proposed method with 

other methods 

 evaluation criteria 
accuracy recall F1-score 

Preposed  method 96.5 94.86 95.85 

]38[ 87.6 89.6 90.01 

   (1) 
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]40[ 92.38 93.11 94.87 

 

The results show that the proposed method has the 

highest accuracy and F1 criterion compared to the other 

two references, and it is close to the highest value in 

readout. This shows that the proposed method has been 

able to establish a good balance between correctly 

identifying attack samples and preventing false positive 

samples. 

The proposed method using convolutional neural 

networks and particle swarm optimization algorithm 

has been able to show better performance than the 

previous methods in detecting penetration and traffic 

analysis of SDN networks. 

In this section, the results of the evaluation of 

different machine learning algorithms to discover 

traffic patterns in software-oriented networks (SDN) 

are analyzed. The following table shows the accuracy 

results of different algorithms: 

 

Table 4-2: Comparison of the proposed method 

with other algorithms 

 

Algorithm Accuracy 

proposed method 96.5 

KNN 71.47 

DT 95.76 

SVM 95.74 

 

The proposed algorithm, which uses convolutional 

neural networks (CNN), has the best performance 

among the investigated algorithms with an accuracy of 

96.5%. This result shows that CNN, with its 

capabilities in extracting complex features and deep 

learning, has been able to identify traffic patterns well 

and achieve higher accuracy than other algorithms. 

The K-Nearest Neighbor (KNN) algorithm with 

71.47% accuracy has the lowest accuracy among the 

investigated algorithms. This result shows that KNN 

may perform poorly when dealing with complex and 

high-dimensional data. Due to the simplicity of this 

algorithm and the inability to extract complex features, 

it provides less accuracy. 

The decision tree (DT) algorithm has performed 

very well with an accuracy of 95.76% and is known as 

one of the efficient algorithms in identifying traffic 

patterns. Decision tree using tree structure and decision 

rules has been able to achieve high accuracy and work 

well with traffic data. 

The support vector machine (SVM) algorithm has 

also performed well with 95.74% accuracy. SVM has 

been able to detect traffic patterns with high accuracy 

by using feature spaces and optimal separators. 

Although the accuracy of SVM is slightly lower than 

decision tree, it is still in the high performance range. 

The results show that the proposed method using 

convolutional neural networks (CNN) has been able to 

achieve the best accuracy among the investigated 

algorithms. This shows the high power of CNN in 

identifying and learning complex patterns in traffic 

data. On the other hand, more traditional algorithms 

such as KNN, DT and SVM have also performed 

significantly, but could not reach the accuracy of the 

proposed method. 

According to these results, the use of convolutional 

neural networks (CNN) as the proposed method in this 

research is a suitable choice and can help improve the 

accuracy and efficiency of traffic pattern detection 

systems in software-based networks. This method has 

many capabilities in analyzing complex data and 

extracting important features, which has made it a 

powerful tool in the field of machine learning. 

 

5. Conclusion 

the data set used in this research included various 

network traffics, including normal and abnormal 

traffics. The data has been collected from various 

sources to have high diversity and realism. The data 

pre-processing process has included cleaning, 

normalization and extraction of important features, 

which has greatly helped to improve the quality of the 

data and the accuracy of the models. 

In this research, four main algorithms have been 

evaluated: k-nearest neighbor (KNN), decision tree 

(DT), support vector machine (SVM) and 

convolutional neural networks (CNN). 

In addition to accuracy, other criteria such as recall 

and F1 criteria have also been used to evaluate the 

performance of models. 

The proposed algorithm, which uses convolutional 

neural networks (CNN), has the best performance 

among the investigated algorithms with an accuracy of 

96.5%. This result shows that CNN, with its 

capabilities in extracting complex features and deep 

learning, has been able to identify traffic patterns well 

and achieve higher accuracy than other algorithms. The 

readability of 94.86% and the F1 criterion equal to 

95.85% also indicate the high ability of this algorithm 

to correctly detect positive samples and reduce positive 

and negative errors. 

The K-Nearest Neighbor (KNN) algorithm with 

71.47% accuracy has the lowest accuracy among the 

investigated algorithms. This result shows that KNN 

may perform poorly when dealing with complex and 

high-dimensional data. Due to the simplicity of this 

algorithm and the inability to extract complex features, 

it provides less accuracy. 

The decision tree (DT) algorithm has performed 

very well with an accuracy of 95.76% and is known as 

one of the efficient algorithms in identifying traffic 

patterns. The decision tree has been able to categorize 

the traffic data well and achieve high accuracy by using 

the tree structure and decision rules. This algorithm is 

one of the popular methods in traffic data analysis due 

to its simplicity and high efficiency. But it has a 

weaker performance than the proposed method. 

One of the main advantages of a decision tree is that 

it is naturally interpretable. This feature allows network 

administrators and analysts to easily understand the 
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reasons behind the decisions and classifications made 

by the model. This interpretability is especially 

valuable in cases where there is a need to explain the 

results to non-technical managers. 

Decision tree can also work well with data with 

different features and incomplete data. However, one 

of the weaknesses of this algorithm may be the creation 

of overly complex trees and overfitting in the training 

data. To reduce this problem, techniques such as 

pruning are used to reduce the complexity of the tree 

and improve the model. 

The support vector machine (SVM) algorithm has 

also performed well with an accuracy of 95.74%. 

Using feature spaces and optimal separators, SVM has 

been able to recognize traffic patterns with high 

accuracy. Although the accuracy of SVM is slightly 

lower than decision tree, it is still in the high 

performance range. The recall and F1 criterion for 

SVM are not available in this table, but it can be 

expected that this algorithm also performs well in these 

criteria. 

One of the main advantages of SVM is its ability to 

work with high-dimensional data and determine 

optimal decision boundaries for separating classes. 

This feature makes SVM perform very well, especially 

in cases where the data is not linearly separable. 

However, one of the challenges of using SVM is the 

need to fine-tune its various parameters, such as the 

tuning parameter (C) and choosing the appropriate 

kernel type. 

The results obtained from sources [38] and [40] have 

also been used as a comparative measure. These results 

show that other algorithms with accuracy, recall and F1 

criterion have had acceptable performance of 87.6%, 

89.6% and 90.01% respectively in [38] and 92.38%, 

93.11% and 94.87% in [40], but still their performance 

It was less than the proposed method (CNN). 

The results show that the proposed method using 

convolutional neural networks (CNN) has been able to 

obtain the best accuracy, readability and F1 criterion 

among the investigated algorithms. This shows the 

high power of CNN in identifying and learning 

complex patterns in traffic data. On the other hand, 

more traditional algorithms such as KNN, DT and 

SVM have also performed significantly, but could not 

reach the accuracy of the proposed method. 

According to these results, the use of convolutional 

neural networks (CNN) as the proposed method in this 

research is a suitable choice and can help improve the 

accuracy and efficiency of traffic pattern detection 

systems in software-based networks. This method has 

many capabilities in analyzing complex data and 

extracting important features, which has made it a 

powerful tool in the field of machine learning. 

Finally, the results of this research can pave the way 

for future research in the field of improving machine 

learning models to analyze and manage software-based 

network traffic. Using more advanced deep learning 

techniques, combining different models and improving 

data preprocessing processes can lead to achieving 

higher accuracy and efficiency in identifying traffic 

patterns. In this way, the security and efficiency of 

SDN networks will be significantly improved. 

 

5.2 Future works 

  can lead to the development and improvement of 

current methods and open new horizons in the field of 

using machine learning and deep learning in software-

based network traffic analysis and management. 

Therefore, continuing research in this field and 

applying new techniques can have positive effects on 

the security and efficiency of SDN networks. 

In general, the findings of this research show the 

importance and efficiency of using advanced deep 

learning models, especially convolutional neural 

networks (CNN) in analyzing and identifying traffic 

patterns in software-based networks (SDN). In this 

section, research limitations and suggestions for future 

research are discussed. 
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1. Introduction 

The healthcare service system plays a crucial 

role in the medical domain, addressing significant 

demands on human life. To advance, healthcare 

providers in developing countries are increasingly 

adopting intelligent technologies such as artificial 

intelligence (AI) and machine learning. The 

integration of AI has spurred advancements in 

human-centered healthcare systems. AI 

technologies have notably influenced the 

development of intensive care and supervisory 

activities in hospitals and clinics [1-3]. 

Extensive research by Jafar Abdollahi since 

2019 has highlighted the successful application of 

AI, including machine learning and deep learning, 

in medical image and healthcare analysis. His 

research covers a range of conditions such as 

bupropion, diphenhydramine, breast cancer, 

medicinal plants, epidemics, stroke, lung cancer, 

social networks, diabetes, suicides, coronary artery 

disease, and more, demonstrating promising results 

[2-5]. 

Machine learning, an automated process that 

enables computers to learn and improve 

performance without explicit programming, is 

central to these advancements. Unlike systems 

reliant on preset rules, machine learning utilizes 

complex algorithms and statistical techniques to 

analyze data and make accurate predictions. The 

dataset's quality is critical for machine learning 

accuracy, leading to more precise forecasts as the 

data improves [3,18]. 

Machine learning has found applications across 

various industries, including banking, retail, and 

healthcare. In healthcare, it offers significant 

opportunities for disease detection and treatment. 

One of its key benefits is enhancing the accuracy 

of data forecasting and classification, which is 

particularly valuable in medical analysis. As more 

data is collected, the prediction model's ability to 

make precise decisions improves. 

mailto:a.mirzaei@iau.ac.ir
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Overall, the healthcare service system is vital 

in addressing human needs, and advanced 

technologies like AI and machine learning are 

instrumental in advancing and refining healthcare 

services. The integration of AI has led to 

significant developments in human-centered 

healthcare systems. Since 2019, Jafar Abdollahi’s 

research has demonstrated the successful 

application of AI in diagnosing various diseases 

and analyzing medical images, yielding 

encouraging results across multiple conditions. 

2.  OVERVIEW OF MACHINE-LEARNING IN 

HEALTHCARE 

 Machine learning, a branch of artificial 
intelligence, focuses on using data to train 
algorithms so they can act or anticipate without 
explicit programming. Machine learning has the 
ability to completely change how the healthcare 
sector recognizes, treats, and prevents diseases, as 
seen in Figure 1. The following are a few possible 
uses of machine learning in the medical field [4,19]: 

 

Fig 1 illustrates, machine learning has the power to radically 
alter how we identify, manage, and prevent diseases in the 
healthcare industry [19]. 

A. Predictive analytics:  Utilizing information 
from claims data, electronic health records, and 
other sources, machine learning algorithms can 
forecast the probability of certain health 
outcomes, like hospital readmissions or the 
onset of chronic illnesses. This capacity permits 
early preventative treatments and enables 
medical practitioners to identify individuals 
who are more likely to have negative effects 
[6,20].  

B. Diagnosis and treatment:  Diagnoses and the 
best course of treatment for a patient can be 
made with the assistance of machine learning 
algorithms that have been trained on medical 
images, such as CT scans and X-rays [5,21]. 

C. Personalized medicine: Using unique patient 
variables like genetics and medical history, 
machine learning may be used to forecast 
which drugs a patient is most likely to react to 
[7, 22].  

D. Clinical decision support: Clinical decision 
support systems may incorporate machine 

learning algorithms to help medical personnel 
make better decisions about patient care [8, 23].  

E. Population health management: Data from huge 
populations may be analyzed using machine 
learning to find trends and patterns that can 
guide the creation of public health programs.  
All things considered, using machine learning 
to healthcare might lead to better patient 
outcomes, lower costs, and increased system 
efficiency [9, 24]. 

3. REVIEW OF MACHINE LEARNING 

 The two main subcategories of machine 
learning are supervised learning and unsupervised 
learning, as seen in Figure 2. In order to forecast 
future results, supervised learning algorithms are 
trained with input and output data from previous 
occurrences. Unsupervised learning algorithms, on 
the other hand, find underlying structures or hidden 
patterns in the given data without the need for pre-
existing labels. Unsupervised learning mostly 
concentrates on clustering tasks, whereas 
supervised learning is appropriate for both 
classification and regression problems [10- 13].  

 
 

 

Fig 2. Supervised learning and unsupervised learning are the 
two primary subcategories of machine learning [13]. 

 Classification algorithms, which predict 
categorical outcomes, are a subset of supervised 
machine learning approaches. Unlike unsupervised 
learning, supervised learning relies on known and 
labeled training data. The data is divided into 
training and testing sets [14-17]. Classification 
algorithms sort incoming data into distinct 
categories to make predictions. Supervised machine 
learning is commonly applied in fields such as 
speech recognition, medical image interpretation, 
and heart attack prediction [7, 18]. 
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Using the supplied training data, categorization 

models are created in supervised learning. Then, more 
unlabeled data can be classified by these models. One 
output variable from the training dataset needs to be 
categorized. In order to categorize the test data, 
classification algorithms first recognize unique patterns 
in the training data [13]. Neural networks, decision trees, 
naïve Bayes, K-nearest neighbors, and support vector 
machines are examples of common classification 
techniques. 

 
A. Supervised Machine Learning 

 Decision Trees(DT) 

  A decision tree classifier uses a tree-like diagram to 
illustrate possible outcomes, final values, and options. 
This method involves computing the probabilities of 
selecting different actions through a computer 
algorithm. The process begins with samples of training 
data and their associated category labels. The decision 
tree method recursively partitions the training data into 
subsets based on feature values, resulting in subgroups 
with more homogeneous data compared to the parent set 
[19, 25]. 

 

Fig 3. Visual illustration of the DT algorithm [13] 

In a decision tree, every internal node denotes a test 
feature, every branch node shows the test's outcome, and 
every leaf node shows the class label. The decision tree 
classifier classifies an unknown sample using the route 
from a root node to a leaf node, and it utilises this path 
to derive the category label [15–17]. 

 Support Vector Machine (SVM) 

The Support Vector Machine (SVM) is a classical 
machine learning method used for addressing 
classification problems. SVM plays a vital role in 
supporting a wide range of applications in extensive data 
mining environments [30]. It leverages specific 
characteristics of a model to train data and generate 
accurate predictions from a given dataset [20–22].  

 

Fig 4. Visual illustration of the SVM algorithm [22]. 

Support Vector Machine's mathematical intuition: 
Think of a binary classification task where there are two 
classes, denoted by the labels +1 and -1. The input 
feature vectors (X) and the matching class labels (Y) 
comprise our training dataset. The equation for the linear 
hyperplane can be written as: 

0 (1)Tw x b   

The direction perpendicular to the hyperplane, or the 
normal vector, is represented by the vector W. The 
offset, or distance, of the hyperplane from the origin 
along the normal vector w is represented by the 
parameter b in the equation.   The distance between a 
data point 𝑥𝑖and the decision boundary can be calculated 
as: 

(2)
|| ||

T

i
i

w x b
d

w


  

where ||w|| represents the Euclidean norm of the weight 
vector w. Euclidean norm of the normal vector W. 

 Naïve Bayes (NB) 

An approach that is frequently used for classification 
jobs is the Naïve Bayes algorithm. It is one of the most 
basic types of Bayesian networks since it is predicated 
on the idea that there is a single parent node with a finite 
number of independent child nodes. As shown in Figure 
6, the Naïve Bayes technique multiplies the individual 
probabilities of each attribute-value combination to 
determine the probability of a classification. This 
approach works incredibly well in cases where the 
qualities are independent. The Naïve Bayes method's 
effective computational training time is one of its main 
benefits. The classification performance of the algorithm 
can also be improved by eliminating unnecessary 
characteristics [23-26].   

0 1 1 2 2( ...

1
( 1| ) (8)

1 x x nxn
P y x

e
       

 


 

 

 ( | )P c x  = Posterior probability the 

probability of class C given the features X. 

 ( | )P X C = Likelihood the probability of the 

features X given the class C. 
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 ( )P c = Class Prior Probability the probability 

of the class C occurring. 

 ( )P x = Predictor Prior Probablility the 

probability of the features X occurring. 

 

 K-Nearest Neighbours (K-NN) 

 In data mining classification technology, the K-
nearest neighbors (K-NN) classification technique is a 
straightforward and intuitive method. The K-NN 
algorithm operates on the principle that an unknown 
pattern can be classified by considering the K nearest 
neighbors. By specifying a value for K, the algorithm 
identifies the category based on the majority class of the 
K training samples most similar to the unknown pattern. 
Factors such as the chosen K-value and the distance 
metric play crucial roles in the performance of the 
classifier [27]. 

 
Eculidean=  

2 2 2

1 2 1 2 1 2( ) ( ) ( ) (4)d x x y y z z     
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Fig 5. Visual illustration of the KNN algorithm [27]. 

One advantage of the K-NN method is its relatively 
low training time compared to other machine learning 
algorithms. However, it may require more 
computational time during classification. Despite this, 
K-NN is favored for its simplicity and ease of use in 
classification tasks. It is particularly effective when 
dealing with datasets that have multiple class labels. 
Additionally, the data training phase of K-NN tends to 
be faster than that of other machine learning algorithms 
[27, 28]. 

 Linear Regression (LR) 

 Linear regression is a straightforward and 

commonly used method for quantifying the relationship 

between response variables and continuous predictors. 

Its simplicity makes it an optimal choice for analyzing 

small datasets with high accuracy, as it is relatively easy 

to understand and interpret. However, if there is an 

excessive number of predictor variables, the model may 

struggle to produce reliable results and might not 

provide the desired outcome [29-31]. 

0 1 (7)y x     

Where: 

 The dependent variable, often known as the 

target or outcome variable, is Y.  

 The independent variable, often known as the 

predictor or feature, is x.  

 The value of y when x=0 is the regression 

line's intercept, or β0.  

 The regression line's slope, or the change in y 

for every unit change in x, is β1.  

 The error term, denoted by ϵ, is the 

discrepancy between the observed and model-

predicted values.  

 

 Logistic Regression (LR) 

Unlike linear regression, which predicts continuous 
data, logistic regression is primarily used for predicting 
discrete class labels. In classification problems, logistic 
regression estimates the probability of a sample 
belonging to one of two possible categories. This is 
achieved by applying a logistic function, which maps the 
predicted values to a binary outcome of either 0 or 1. 
Consequently, logistic regression can indicate the 
category to which a sample belongs based on the output 
variable. Researchers have utilized logistic regression to 
predict health-related behaviors [32-35]. 

0 1 1 2 2( ...

1
( 1| ) (8)

1 x x nxn
P y x

e
       

 


 

Where: 

 P(y=1∣x) is the probability that the dependent 

variable y is 1 given the independent variables 

x1,x2,…,xn. 

 β0  is the intercept (the bias term). 

 β1,β2,…,βn are the coefficients for the 

independent variables x1,x2,…,xn 

 e is the base of the natural logarithm 

(approximately equal to 2.718). 

 

 Ensemble Methods 

 Ensemble methods leverage the strengths of 
multiple machine learning algorithms rather than relying 
on a single algorithm. By combining and integrating 
various models, ensemble approaches enhance the 
overall learning process. One key advantage of 
ensemble methods is their ability to achieve high 
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predictive accuracy, which can be superior to that of 
individual models. However, this increased accuracy 
often comes at the cost of a more complex training 
process, which can impact efficiency [36, 37]. 

 

Fig 6. Visual illustration of the Ensemble algorithm [36]. 

Currently, two common types of ensemble learning 
techniques are bagging-based methods and boosting-
based methods. For instance, Random Forest is a 
representative algorithm of bagging, while Adaboost, 
Gradient Boosting Decision Trees (GBDT), and 
XGBoost are examples of boosting-based algorithms 
[38, 39]. 

 Support Vector Regression (SVR) 

 An examination of the connection between one or 
more independent variables and a continuous dependent 
variable is done using the supervised regression 
approach known as support vector regression (SVR). 

 

Fig 7. Visual illustration of the SVR algorithm. 

While linear regression techniques depend on certain 
model assumptions, support vector regression (SVR) 
focusses on identifying the significance of variables in 
order to describe the connection between inputs and 
outputs. By keeping the inaccuracy within a certain 
tolerance margin, this method improves the modelling 
and prediction of continuous data [33]. 

B. Unsupervised Machine Learning 

 Unsupervised machine learning techniques use 
sophisticated models with millions of parameters to 

analyze vast quantities of unlabeled data in a highly non-
linear manner. These methods are popular tools for 
clustering and exploratory data analysis, allowing for the 
discovery of hidden patterns within the data. Unlike 
supervised learning, which relies on labeled data, 
unsupervised learning draws inferences from datasets 
that lack explicit output labels. Key applications of 
unsupervised learning include market research, item 
recognition, and DNA sequence analysis [34]. 

Putting incoming data into meaningful categories 
based on similarities and features rather than 
predetermined labels is the fundamental idea behind 
unsupervised learning. This is grouping data according 
to innate patterns instead of precise categorizations. 
Hard clustering and soft clustering are the two primary 
categories of clustering techniques. While soft clustering 
permits data points to belong to numerous clusters with 
differing degrees of membership, hard clustering 
allocates each data point to a single cluster. Popular 
techniques for unsupervised machine learning are 
covered in the section that follows [40, 41]. 
A. K-Means 

K-means is a well-liked unsupervised learning 
method that is effective and straightforward for handling 
clustering issues. By minimizing the total squared 
distances between each point and the centroid of its 
designated cluster, the K-means method divides data 
points into kkk clusters. This technique is popular for a 
variety of clustering applications because it effectively 
divides data into clusters with low intra-cluster variance 
[42, 43]. 
B. K-Medoids 

 Unlike K-Means, which uses the mean value of data 
points in a cluster as a reference point, K-Medoids 
employs actual data points as the central objects, or 
medoids, to determine cluster centers. K-Medoids 
assigns each data point to the nearest medoid and builds 
clusters around these central objects. Although K-
Medoids can produce conflicting results depending on 
the initial medoids, it is less sensitive to outliers and can 
adapt cluster memberships more effectively than K-
Means [44, 45]. 

C. Using Hierarchical Grouping 

One popular technique in data mining for cluster 
analysis is hierarchical cluster analysis (HCA), also 
referred to as hierarchical clustering. By comparing the 
traits inside each cluster, it seeks to establish a 
hierarchical structure of clusters. This methodology 
creates tiered sets of clusters repeatedly, resulting in a 
diagram that resembles a tree called a dendrogram. The 
relationships between data points and clusters are 
visually represented by the dendrogram, where each 
level denotes a distinct stage of cluster development [46-
49].   
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Table 1. Gives a quick overview of the pros and cons of each algorithm in a clear and concise manner [46-49]. 

SUPERVISED UNSUPERVISED 

Algorithms Pros Cons Algorithms Pros Cons 

DT 

Easy to interpret, 
handles both 

categorical and 
numerical data, 
works well with 
non-linear data. 

P
ro

n
e to

 o
v
erfittin

g
, 

esp
ecially

 w
ith

 n
o

isy
 

d
ata. 

K
-M

ean
s 

Fast, scalable, 
and works well 

with large 
datasets. 

Effective for 
spherical 
clusters. 

Sensitive to 
initial centroids 

and outliers, 
struggles with 

clusters of 
varying sizes or 
densities, and 

assumes 
spherical 
clusters. 

SVM 

Effective in high-
dimensional spaces, 
robust to outliers, 

and works well with 
clear margin 
separation. 

Computationally 
intensive, less 
effective with 

large datasets, and 
difficult to 
interpret. 

K
-M

ed
o
id

s 
More robust to 

outliers and noise 
compared to K-

Means, as it uses 
medoids instead 

of means. 

Slower and 
more 

computationally 
intensive than 

K-Means, 
especially with 
large datasets. 

KNN 

Simple to 
implement, no 
training phase, 

effective with small 
datasets. 

Computationally 
expensive with 
large datasets, 

sensitive to 
irrelevant features, 

and storage-
intensive. 

U
sin

g
 H

ierarch
ical G

ro
u
p
in

g
 

Does not require 
the number of 
clusters to be 

specified, 
provides a 

hierarchy of 
clusters, and can 
capture complex 
cluster structures. 

Computationally 
expensive, 

especially for 
large datasets, 

and sensitive to 
noise and 
outliers. 

Linear 
Regression 

Simple and 
interpretable, works 

well with linear 
relationships, and 

easy to implement. 

Assumes linearity, 
sensitive to 

outliers, and may 
underperform with 

non-linear data. 

Logistic 
Regression 

Interpretable, works 
well with binary 

classification, and 
can handle linear 

decision boundaries. 

Assumes linearity, 
struggles with 

complex 
relationships, and 

sensitive to 
outliers. 

   

Ensemble 
Methods 

Combines multiple 
models to improve 

performance, 
reduces overfitting, 

and increases 
accuracy and 
robustness. 

More complex and 
computationally 
expensive, less 

interpretable, and 
requires careful 

tuning. 

   

SVR 

Effective for 
regression with 

high-dimensional 
data, robust against 
overfitting in high-
dimensional spaces. 

Similar challenges 
as SVM, including 

computational 
complexity, and 
less intuitive to 

interpret. 
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The table compares various algorithms, highlighting 
that Decision Trees are easy to interpret and handle 
different data types but are prone to overfitting. SVM is 
effective in high-dimensional spaces but is 
computationally intensive. KNN is simple and effective 
with small datasets but struggles with large datasets and 
irrelevant features. Linear and Logistic Regression are 
interpretable and handle linear relationships well but are 
limited by their assumption of linearity and sensitivity to 
outliers. Ensemble Methods improve accuracy and 
reduce overfitting by combining models but are more 
complex and less interpretable. SVR shares SVM's 
strengths in high-dimensional regression but also its 
computational challenges. K-Means is fast and scalable 
but sensitive to outliers and initial centroids, while K-
Medoids is more robust to outliers but slower. 
Hierarchical Grouping captures complex structures 
without needing a preset number of clusters but is 
computationally expensive and sensitive to noise.  

4. EVALUATION MATRIX OF SUPERVISED 

CLASSIFICATION ALGORITHMS 

Three standard measures are used to assess the 

performance of supervised classification algorithms: 

specificity, sensitivity, and accuracy. Specificity is the 

amount of true negative data points identified in actual 

negative data points (TP = true positive, TN = true 

negative, FN = false negative, and FP = false positive); 

accuracy is the percentage of prediction rate in the 

model; and sensitivity is the amount of true positive 

data points correctly identified in actual positive data 

points [3- 5].  

Accuracy: A category's accuracy is calculated by 

dividing its "correct predictions made" total by the 

number of "total predictions made" by a category that is 

similar. 

 (9)
TP TN

Accuracy
TP FP TN FN




  
 

 

Sensitivity:  Real positive rate: If the individual has a 

positive result, the model will be positive in a tiny 

fraction of situations, according to the formula below. 

Sensitivity (10)
TP

TP FN



 

Specificity: If the person gets a poor result, it will only 

happen in a tiny portion of situations. This is calculated 

with the following formula [50-53]. 

Specificity (11)
TN

TN FP



 

5. DISSCUSION 

 Healthcare has shown considerable promise 

for both supervised and unsupervised machine learning 

technologies. The applications of these approaches vary 

based on the type of data and the specific tasks at hand, 

each with its own advantages and limitations. 

With supervised learning, a model is trained 

using labeled data in order to forecast outcomes based 

on input features [65-67]. It has been widely applied in 

the medical field to diagnose, classify, and predict 

prognoses [68-70]. To predict cardiovascular risk, 

identify malignant cells, and classify medical images, 

for instance, supervised learning algorithms such as 

decision trees, logistic regression, and support vector 

machines have been used [71-75]. Supervised learning 

is useful, but it needs a lot of labeled data, and it can be 

biased if the training set isn't typical of the general 

population.  

On the other hand, unsupervised learning makes use of 

unlabeled data to train a model that, in the absence of 

explicit guidance, finds patterns and correlations on its 

own [14, 15, 16]. This method works well in the 

medical field for tasks like clustering, anomaly 

detection, and feature extraction [54-57]. For example, 

K-means clustering techniques have been used to 

identify uncommon conditions, extract pertinent 

information from medical images, and classify patients 

based on shared features [58-60]. Unsupervised 

learning, however, occasionally yields outcomes that 

are difficult to interpret and are not clinically relevant.  

Thus, there are clear advantages and 

disadvantages to both supervised and unsupervised 

learning in the healthcare industry. The particular task 

at hand, the type of data, and the resources at hand all 

influence which of these approaches is best. Machine 

learning will be essential to enhancing patient outcomes 

and advancing medical research as long as healthcare 

data is available.  

 Machine learning algorithms each have 

distinct strengths and weaknesses in medical health 

applications. Decision Trees are easy to understand but 

can overfit and be biased. Random Forests reduce 

overfitting but can become complex and resource-

intensive. Support Vector Machines (SVM) perform 

well in high-dimensional spaces but are expensive and 

hard to interpret. Neural Networks capture complex 

patterns across various data types but require significant 

resources and are often seen as a "black box." K-Nearest 

Neighbors (KNN) is simple and flexible but 

computationally expensive and sensitive to irrelevant 

features. Logistic Regression is efficient and 

interpretable but limited to linear relationships. 

Gradient Boosting Machines (GBMs) offer high 

accuracy but are prone to overfitting and are complex to 

implement. Principal Component Analysis (PCA) 

reduces dimensionality effectively but may lose 

important information, while Naive Bayes is efficient 

but struggles with correlated features due to its 

assumption of independence [61-64]. 
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Table 2. summarizing the strengths and weaknesses of machine learning algorithms in medical health, along with references for each 
aspect [61-64]. 

ASPECT STRENGTHS WEAKNESSES REF 

Decision 

Trees 

- Simple to understand and interpret.  

- Useful for classification tasks with 

clear decision rules. 

- Prone to overfitting, especially with 

complex data.  

- Can be biased towards features with more 

levels. 

[25]  

Random 

Forest 

- Reduces overfitting by averaging 

multiple decision trees.  

- Handles large datasets with higher 

accuracy. 

- Computationally intensive.  

- Model can become complex and less 

interpretable. 

[26]  

Support 

Vector 

Machines 

(SVM) 

- Effective in high-dimensional 

spaces.  

- Works well for classification 

problems with clear margins. 

- Memory and computationally expensive.  

- Difficult to interpret results and tune 

hyperparameters. 

[27]  

Neural 

Networks 

(ANNs) 

- Capable of capturing complex 

patterns in data.  

- Suitable for various types of data 

including images and texts. 

- Requires large amounts of data and 

computational resources.  

- Can be seen as a "black box" with poor 

interpretability. 

[28]  

K-Nearest 

Neighbors 

(KNN) 

- Simple to implement and 

understand.  

- Flexible and adaptable to different 

types of data. 

- Computationally expensive with large 

datasets.  

- Sensitive to irrelevant features and the 

choice of 'k'. 

[29]  

Logistic 

Regression 

- Provides probabilistic outputs and is 

easy to interpret.  

- Computationally efficient for binary 

classification. 

- Assumes a linear relationship between 

features and the log odds of the outcome.  

- Limited to binary classification without 

extensions. 

[30]  

Gradient 

Boosting 

Machines 

(GBMs) 

- Provides high prediction accuracy.  

- Can handle various types of data and 

feature interactions. 

- Prone to overfitting if not tuned properly.  

- Computationally expensive and complex to 

implement. 

[31]  

Principal 

Component 

Analysis 

(PCA) 

- Reduces dimensionality while 

retaining most variance in data.  

- Simplifies models and speeds up 

computation. 

- May discard useful information.  

- Difficult to interpret principal components. 

[32] 

Naive Bayes - Simple and efficient for large 

datasets.  

- Good performance with small to 

moderate-sized datasets. 

- Assumes feature independence, which may 

not hold true.  

- Less accurate with highly correlated 

features. 

[33] 
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6. CONCLUSION 

In conclusion, the application of machine learning 

algorithms in healthcare offers significant potential 

to enhance diagnostic accuracy and treatment 

effectiveness. As highlighted in this review, 

different algorithms come with their own strengths 

and limitations. For instance, while decision trees 

and ensemble methods provide interpretability and 

improved accuracy through model combinations, 

they can suffer from overfitting and complexity. 

On the other hand, algorithms like SVM and SVR 

excel in handling high-dimensional data but 

require substantial computational resources. 

Simpler algorithms such as KNN and logistic 

regression, though effective in specific contexts, 

face challenges with scalability and handling non-

linear relationships. 

Moreover, unsupervised techniques like 

K-Means and hierarchical grouping offer valuable 

insights into data patterns without requiring labeled 

datasets, but they can be sensitive to initial 

conditions and computationally intensive. The 

review underscores the importance of selecting the 

appropriate algorithm based on the specific 

characteristics of the healthcare data at hand, 

whether it involves small or large datasets, linear 

or non-linear relationships, or the need for 

scalability and robustness. Ultimately, the 

integration of these machine learning models into 

healthcare systems must consider these trade-offs 

to optimize patient outcomes and improve the 

efficiency of medical practices. 
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1. Introduction 

The terminal facility arrangement problem has 

received less attention than other issues in the 

literature because many perspectives of 

customer choice cannot be controlled by 

transportation directors ‘[1] and demand is 

highly ambiguous in this area [2]. Therefore, 

more than presenting the complicacy of the 

methods used to examine the issue of terminal 

deployment, determining the subject solving 

method, preparing appropriate data and 

obtaining optimal data are other important 

points to achieve optimal deployment. The 

issue of arranging terminal facilities is an NP-

hard problem in terms of mathematical 

calculations [3,4]. There are various methods 

to solve the facility design problem in this 

field, whether it is a one-criteria or multi-

criteria problem. One of them is the quadratic 

allocation problem (QAP) if it considers 

approximately equal regions for each section 

and different locations [5]. Next are 

approximate and heuristic processes that are 

effective in solving multiple design problems 

simultaneously [6]. Another study is mixed 

programming (MP), which uses a general 

distance-based aim function to design facilities 

for segments of unequal or equal area [8]. The 

facility allocation problem is defined by 

managers as placing a predestined number of 

possibilities in possible neighborhoods and 

sizes [9]. Lee and Lee assumed different 

possibilities in nearby areas to amend the 

efficiency of facilities in a border area [10]. 

Shayan and Chitilapili assumed the issue of 

facility allocation as an optimization issue.  
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They tried to achieve the optimal arrangement 

of facilities by considering the interactions 

between facilities and material handling costs 

[11]. In the research of recent years, methods 

based on technological innovation and 

crowded intelligence have been used to 

optimally solve facility allocation problems. 

Shahin and Turkabi developed a new hybrid 

meta-heuristic technique for solving multiple 

instrument design problems based on the 

simulated annealing (SA) method and based 

by tabu list [12]. By integrating the honey bee 

(BA) technique, Cheng and Lin obtained a 

hybrid method for multi-criteria facility design 

problems. Their methods had global search 

capability with local research benefits of 

Particle Swarm Optimization (PSO) at the 

same time [13]. Using the Ant Colony (ACO) 

method, Lu et al presented a new model for 

designing the layout of emergency medical 

facilities in the city [14]. Eiler used the ACO 

to locate labs, radiology units, and hospital 

polyclinics specifically for applicants to 

minimize running costs. Huynh et al. reviewed 

the cost estimate of the laboratory. In their 

research, they operated Automatic Integrated 

Moving Average (ARIMA) to appraise the 

number of laboratory applicants. GIS is also 

used to show the running reality or situation for 

the distribution of applicants and laboratory 

costs [16].   Aydin and Fogarty designed a new 

technique in which SA evolutionary method 

was applied to solve the classical clinic 

planning problem and the optimal location 

problem of disabled hospital facilities [17]. 

Kaveh and Sharfi used the Search Engine 

Optimization (CSS) technique, which is based 

on the interaction among charged particles, to 

solve the problem of facility allocation in 

distribution network management [18]. A 

special coordination search method is 

presented by Kaveh et al. To find the location 

of the optimal tool in a given problem [19]. 

Chan et al perused the alteration measure of 

fine-tuning genetic technique and the neighbor 

function of the SA method to solve the 

problem of locating specific facilities. They 

used changeable change functions instead of 

fixed change function or accidentally selected 

genes and increased the efficiency of the 

technique to an acceptable extent [20]’. 

‘Yang et al. modeled the efficiency of 

several meta-heuristic techniques in terms of 

theoretical methods. Their problem is 

considered as a p-median problem for base 

station routing. As mentioned in the text 

above, several researches have been done in 

research activities on the problems of 

allocation of different possibilities, there are 

only specific studies on the problems related to 

the allocation of different terminal locations. 

The purpose of this study is to create a specific 

facility design for the terminals in order to 

minimize the overall costs of the system. The 

cost of moving travel applicants can be 

reduced by minimizing travel between 

different establishments. The optimal 

arrangement problem of our terminal facilities 

is to investigate the best possible arrangement 

of different parts in a hypothetical range. So 

that the distance between the parts that are 

logically connected to each other is reduced. In 

this regard, we created a mathematical method 

for the optimal location of different parts of the 

terminal with the lowest possible cost. 

Different alternative techniques of applied 

strategies were created and the most possible 

and best option was used. As a new paper, the 

simulated annealing (SA) optimization 

technique is used for the first time to solve the 

problem of assigning facilities to a terminal. 

Local search is used in SA method. Aiming to 

measure the performance of the SA technique 

in real-world problems, the SA results are 

measured with effects derived from the Tabu 

Search (TS) and MBO techniques in the given 

problem. The MBO technique was chosen due 

to its simplicity and good application in 

finding reasonable points. The TS technique 

avoids local optimization and has a more 

general search. The results of the assignment 

of terminal components showed that the MBO 

technique shows an acceptable performance 

for solving the problem of assigning 

components of a single terminal. Also, the rest 

of the article is organized as follows. The 

definition of the problem of assigning the 

components of a terminal and the statistical 

information of this problem are presented in 
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Section 2. The meta-heuristic techniques of 

TS, SA and MBO are detailed in Section 3. In 

the next section, we will solve the problem and 

in section 5, the calculation results are 

described. In Section 6’, the paper ends with a 

conclusion and discussion. 

 

2. Model 

 
The ‘design and layout of office facilities 

should include all necessary requirements such 

as entities, mathematical modeling, difficulty 

of movement, vertical movement and 

arrangement of sections within the pre-defined 

limits by Illery [15], in a way that takes into 

account the distance between different 

components and takes care of the customer's 

demand. In order to achieve the efficient and 

optimal positioning of departments in this 

matter, the distance and the number of 

guidelines for the distance between different 

departments should be considered’, which 

depends on the distance traveled between the 

components. The distance between two points 

determines the connection coefficient, and the 

parts with high traffic should be placed next to 

each other, and the parts with the lowest 

density can be far from each other. We 

investigated and modeled these factors to 

reduce the target performance and overall 

system cost. 

        1- ‘multi-station interaction, which 

depends on the number of passengers moving 

between two stations, should be considered so 

that stations with higher traffic are closer to 

stations that are quieter. 

         2- The number of customers walking to 

each station was calculated in such a way that 

the stations with more customers are closer to 

the main entrance of the customer stations. 

         3- The final transportation cost was 

calculated directly based on the degree of 

travel difficulty, distance, travel frequency, 

and basic travel cost, and therefore, changing 

each of these variables caused a change in the 

transportation cost. 

         4- The final acceptable response of the 

system’ is obtained by performing simulations 

with the aim of improving one or a number of 

variables of the problem. 

To solve this position allocation problem, we 

form a special objective function. While 

paying attention to the physical dimensions of 

the terminal, the number of kiosks is 

proportional to the required area, and the 

average daily data of a season is considered. In 

the special terminal system, the number of 

customers and the number of guides is 

specified. 

The physical structure of the terminal shown in 

Figure 1 includes three blocks, thirty-one 

applicable parking areas with an area of 800 

square meters, and a terminal entrance. There 

are twenty-six zones of different sizes in the 

terminal. 

  

Fig. 1. Physical structure of the terminal. 

The main ‘structure of the terminal consists of 

several blocks, a parking lot with a defined 

area and a main terminal entrance. So, there 

are several parts of different sizes in the 

terminal. The size and distance of the main 

entrance of the terminal to the areas to be 

located are given in Table 1’. 

According to the assumptions explained in the 

text, Table No. 1 is presented based on the 

entities of the problem and the objective 

function of the project is expressed in the form 

of a special equation. 

     

min⁡(∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=0 + ∑ ∑ 𝑞𝑗𝑘𝑠𝑗𝑘)

𝑛
𝑘=0

𝑚
𝑗=0         (1) 

 

In this ‘formula, m is the number of parking 

spaces, n is the number of zones where the 

parking lots are located, xi is the distance 

between the possible zones and the main 

entrance of the terminal, yi is the number of 

weekly customers in the parking lot. located up 

to the ith place. , 𝑞𝑗𝑘 is the number of 

customers from the parking lot who were sent 
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to the location j to the parking lot that is placed 

in the return range. 𝑠𝑗𝑘 is the distance between 

region j and return. The 𝑞𝑗𝑘 matrix can be 

measured as a principal matrix in QAP’ topics. 

This matrix consists of different service 

values, which is the number of trips inside the 

terminal. 

 
Table 1 

The size of the areas and the distance to 

the terminal entrance 

  

Area Code Distance to the 

station 

Size 

 

0  20  900 
1  20  900 
2  30  900 
3  30  900 

4  70 900 
5  70  900 
6  80  900 
7  80  900 
8  120  900 
9  120  900 
10  130  900 
11  130  900 

12  170  900 
13  170  900 
14  180  900 
15  180  900 
16  220  900 
17  230  900 
18  230  900 
19  230  900 

20  250  900 
21  260  900 
22  260  900 
23  250  900 
24  270  900 
25  280  900 
26  280  900 
27  270  900 
28  320  900 

29  330  900 
30  330  900 
31  320  900 

 
Our problem had two obvious limitations. 

First, the terminal facility allocation should 

take into account overall system costs related 

to customer handling and congestion vehicle 

handling, ‘but we did not consider the number 

of vehicles because reliable information was 

hard to come by. Second, the terminals were 

not considered by the staff, because their 

movement directly depends on the needs of the 

primary’ travel establishments. 

 

3. Methods 
3.1 The ‘MBO migratory bird 
optimization technique 
The ‘MBO migratory bird optimization 
technique for solving problems was 
investigated by Duman et al. in 2012 [22]. 
The MBO technique is inspired by the V 
formation to optimally use the energy of 
migratory birds in flight. This technique is 
often designed for discrete problems and 
has been implemented and investigated on 
QAP problems that are based on actual-
world’ questions. 
The most ‘optimal method of migration for 

migratory birds is the V formation so that they 

can travel longer distances without getting 

tired. It is clear that in this technique the main 

instinct of this formation is to save the total 

energy. The commander bird is the member 

that consumes the maximum energy in the V 

organization. The rest of the members can fly 

for a longer time due to the wind energy 

generated by the movement of the bird's wings 

in front of them. 

The ‘MBO technique is used in many problems 

to solve many cases such as the flow storage 

problem ‘[23-28]’, also in the backpack 

problem [33], or in the credit card fraud 

detection problem [29] and in the case of the 

traveling salesman [31,32], two-way partitions 

are used [33], this technique is also used to 

balance the U-shaped robotic assembly line 

[34]’. 

The ‘MBO method and algorithm starts with 

the initial answers that are randomly generated 

and then tries to improve the obtained answers 

at each step. The permutation, insertion and 

inversion process is used to generate candidate 

solutions for neighbors in order to improve 

existing paths. The resulting candidate close 

responses are then compared to the response 

the technique is looking for. Each current 

answer is checked against the best adjacent 

answer. If the adjacent answer is better than the 

running answer, the neighbor's answer is 

replaced with the running answer. 
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Furthermore, leader displacement is performed 

at defined times to provide optimal responses 

to both sides of the population. The MBO’ 

technique and algorithm include generation of 

relevant initial community, neighbor sharing 

operation, appropriate response descendant 

and leader displacement steps. 

 

3.1.1. Generation a main solution  
      The ‘MBO technique and algorithm 

examines the initial answers that are randomly 

selected and tries to optimize the current 

solution. One of the candidate birds is chosen 

as the commander bird and the other birds are 

resting on the left and right side of the 

commander bird. Therefore, the initial 

population is marked as described in the 

method. where the primary congregation of 

each bird’ represents an initial response. 

3.1.2. Generation an acceptable answer        
 In the ‘MBO technique, an inversion process 

is used to generate input points for the 

operation of searching for the appropriate 

position. In this particular technique, candidate 

neighboring solutions are obtained completely 

randomly from the current solution by 

swapping two selected points. The number of 

potential suitable answers for the front bird and 

the number of optimal answers for the 

candidate bird are different according to the 

process of the MBO technique. The number of 

optimal answers is obtained from equation (2) 

- (4) below [32]’. 

𝑚 ≥ 3; ⁡⁡𝑚 = {3,5,7,9, … }; 𝑘
∈ 𝑁+ 

(2) 

1 ≤ 𝑞 ≤
𝑚−1

2
;𝑞 ∈ 𝑁+ (3) 

𝑚 − 𝑞 = 𝑟 (4) 
 
where ‘m is the number of neighboring 

answers of the front bird, r is the number of 

neighboring answers of other birds, besides 

for the front bird, q’ is the number of 

neighboring points. 

A sample of optimal neighbor answer 

generation by the permutation process is 

shown in Figure 2 [32]. 

 

3.1.3. Neighbor subscription operation 

      In the ‘MBO technique, the neighbor 

sharing operation and process is the special 

feature of this method that makes the method 

stand out from similar meta-heuristic 

techniques. This special neighborhood feature 

ensures the interaction of all members of the 

bird flock. The front bird neighbor responses 

are shared on the left and right sides of the 

rodents. Neighboring responses of other 

members are shared only for themselves. 

According to the corresponding equation (2), 

m produces a neighboring solution for the front 

member. These available answers are 

measured based on the target performance of 

the system and descend from the best answer 

to the worst. The fit point is measured by the 

running response of the front member. If the 

neighboring point is better than the running 

answer, the neighboring answer takes its place. 

Solutions q the remaining point is moved to the 

left bird of the front member. After this 

operation, the remaining point responses (if 

such a neighborhood exists)’ are discarded. 

The neighborhood responses for the left 

member of the front point are substituted and 

the p responses from the front point are added. 

These q + r responses are measured and sorted 

from the best member to the least favorable 

member. The best answer of each point's 

‘neighbor is compared with the existing answer 

of this bird. If the neighboring point's answer 

is better than the current answer, the 

neighboring answer’ of that point replaces the 

existing answer. 

 

               Swap     
 
 

1 4 0 2 5 3  2 4 0 1 5 3 

         Fig. 2. Neighbor solution generation. 
 
The ‘remaining q responses are passed to the 

next bird and other neighboring responses are 

removed. This action is also performed on the 

other side or the right side of the group of 

birds. Neighborhood subscriptions run until 

the end of the bird collection’. 

 

3.1.4. Replacing the leader bird 
      In the ‘MBO algorithm, a flap parameter 

(f) is used to keep indi- viduals in the same 
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sequence for a certain period of time. Then ,

lea- der replace processing is applied. First 

replacement is applied to the left side of the 

flock. While the leader is sent behind the left 

side of the flock, another bird that follows the 

leader is replaced by the leader. Thus, a new 

sequence is created and parameter m is reset. 

The next replacement is applied to the right 

side of the flock. This process is continued 

until the algorithm is terminated. Leader 

replacement process is shown in Fig . 3’ . 

 

 

 

 
Fig. 3. The leader replacement. 

 

      In Algorithm a, the pseudocode of the 

MBO method is presented as follows: 

 

Algorithm a. algorithm MBO 
Create a random initial set 

repetition 

repetition 

‘m Create a neighbor point for the leader member 

Create neighbors of r for the other answer 

Compare the best value of q neighbors with the 

answer of the posterior member 

if (best neighbor answer < current answer value)’ 

Current answer = Neighborhood answer 

up to the input amount 

Replace the leader member 

until termination 

Return the best answer in the set 

 
3.2. Taboo search technique 

      For use in practical optimization problems, 

the TS evolutionary technique was first 

modeled by Glover in 1988 ‘[35]. In the 

research background, the TS technique has 

been applied to multitude practical 

optimization subjects such as the vehicle 

positioning and routing problem [36] as well 

as the traveling salesman project [38] or the 

special flow storage subject [37]’. 

       In the process related to the ‘TS technique, 

an initial answer is generated and during the 

operation, an attempt is made to discover the 

overall optimal answer using local search 

methods such as the exchange and insertion 

operator. In the different memory structure of 

the TS technique, we have two modes. The 

structures of short-term memory and long-term 

memory accept the user to choose the best 

feasible move to generate the appropriate 

response and avoid reaching taboo responses. 

In this method, the TS technique eludes local 

optimization and seeks the global optimal 

solution. When the desired amount is attained, 

the specified taboo is removed and the 

formerly found answer can be chosen as the 

new answer. During the search operation for 

the best point, the optimal answer found by the 

‘TS’ technique is stored in the system memory 

and all the answers produced by the system are 

measured with the desired answer. If there is 

an answer more favorable than the maximum 

answer, the overall system memory is 

updated’. 

 

       In Algorithm b, the pseudocode of the 
TS method is presented as follows: 
 

    Algorithm b. algorithm TS 
Generate the initial answer randomly. This answer 

as Choose the current answer and the best optimal 

answer. 

 repetition 

 Discover neighboring optimal answers using local 

search techniques. 

Choose the answer that is a non-taboo neighbor. 

  Break the norms, even if it is taboo. 

If the resulting answer is better than the existing 

answer, select the new answer as taboo 

If the new answer is better than the best answer, set 

the new answer as the best optimal answer until 

termination’ 

 

3.3. Simulated annealing technique 

To solve the combined and specific problems, 

the SA technique was investigated by 

Kirkpatrick et al. [39]. In the ‘SA technique, it 

is used to find the optimal solution by avoiding 

local answers for functions with manifold 
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variables. The reason for the name of this 

technique is that it is an example of the 

complete arrangement of atoms and the 

minimization of the potential energy of the 

system when cooling solids. The method of 

heating a solid body to its melting point and 

then slowly cooling it to a complete network 

structure is known as annealing process’. 

The ‘simulated annealing technique is 

performed in three specific steps: heating the 

desired object or material to a certain degree 

(heating), maintaining that degree for a certain 

period of time (waiting) and controlled and 

gradual reduction of temperature (cooling). In 

the heating process, the particles of solid 

matter slowly turn into liquid, and when they 

are properly and gradually cooled, crystalline 

particles with a completely regular structure’ 

are formed. 

The structure of this problem and the practical 

annealing operation are based on the Monte 

Carlo technique by Metropolis et al. [41]. In 

the assumed degree of T, the amount of energy 

of the system is determined based on the 

following relationship. 

 
𝑄(𝐸) = 𝑒−𝐸 𝑀𝑇⁄  (5) 

In this formula, ‘M is Boltzmann's constant 

and E is the energy of the device. 

In case of fluctuations in the overall state of the 

system, the new power of the system is 

calculated based on the metropolitan 

technique. The overall stability of a substance 

with energy E1 is physically created by the 

displacement of a randomly selected small 

member, and the amount of energy E2 is 

replaced by another state. If the amount of 

energy decreases (DE = (E2-E1) < 0), the 

system will change to this new format. If the 

energy of the system increases (DE > 0), we 

measure in the new format whether to replace 

the new energy value E1 according to equation 

(6) or not. A uniform number is generated in a 

given interval (ɤe [0,1])’. 

𝛾 ≤ 𝑒𝐸∆ 𝑇⁄     (6) 
In this sense, ‘DE is the distinction in several 

energy levels of different states of matter. 

These selection criteria are known as basic 

system processes. Also, based on equation (5), 

for all energy states in different states, Q (E)’ 

converges to the number 1. It is possible that 

the system has a high energy level even at low 

temperatures. 

The ‘simulated annealing technique has a 

favorable application in vehicle routing [44-

46]’. Also, it has obtained good results in 

different fields, including the selection of 

specific features of equipment [47], the 

traveling salesman problem [45], facility 

allocation problems [46] and workshop 

scheduling [48]. 

In Algorithm c, the pseudocode of the SA 

method is presented as follows: 

 

Algorithm c. algorithm SA 
 
           Randomly generate the initial answer Si 
           repetition 
           Create a neighboring point answer Sn 
           If (new Sn responds better than Si) 
           Set Sn as the optimal answer 
           otherwise (random (0,1) < e∆E/T) 
           Set Sn as the available answer 
           Update T 
           until termination 

 
4. Application of meta-heuristics in the 

issue of terminal facility allocation 

 

       We deal with a discrete problem in this 

research. ‘Algorithms used in this article are 

designed and implemented for discrete 

problems. In this case, there is no fundamental 

change in the structure of methods for the 

process of allocating terminal facilities. To 

solve this problem, the parking lot codes are 

randomly arranged. The amount in the array is 

the parking number. A sample of the layout of 

this parking lot is shown in Figure 4’. 

In ‘Figure 2, parking lot number 3 is located in 

area 1. After placing all the parking spaces in 

the available areas, the appropriateness of the 

answer is evaluated according to function (1). 

These answers are checked by considering the 

area of the area where the parking lots are 

located, the proximity to the main entrance of 

the terminal, the number of customers to the 

parking lot, customer consultation between the 

parking lots and the distance between the 

parking’ lots. 
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         Area No 
 

1 2 3 4 5 6 7 8 9 10  32 

3 1 5 2 4 6 10 8 7 9 … 14 

 
station No 

Fig. 4. Permutation coding for an answer 

 

‘Example. Suppose that four different stations 

(1, 2, 3, 4) are located in five specific regions. 

Tables 2-4’ show the number of station 

customers, recommendations of inter-station 

customers, areas to be deployed and main 

terminal entry time intervals. 

      In ‘Table 2, the second station is shown as 

three separate station plots because it has three 

times the area to be located. The number of 

customers in Table 2 shows the variable y in 

relation (1)’. 

        In ‘table number 3, columns 2 and 3 show 

the same parts of the station (2) and should be 

placed in the adjacent area. In this case, a very 

large number of consultations are done for the 

applicants (600). Table 3 shows the matrix z in 

relation (1)’. 

         According to the sample answer, station 

‘5, 3, 1, 2 and 4 are located in different regions 

1, 2, 3, 4 and 5’ respectively. 

       'Table 5 shows matrix t in the Eq (1)’. A 

sample answer is as follows. 

 

5 3 1 2 4 
 
5. Variable settings 

 

In order to reach the best possible solution 

and cover all aspects in the issue of assigning 

terminal facilities, we perform parameter 

settings for all methods. 
 

Table 2 

The number of customers who come 

to the station. 

 

Parking No 

(Name) 

Number of 

applicant (y) 

Required size 

(m2) 

(A)  1 14,609  900 

(B)  2 55,406 2700 

(B)  3 

(C)  4 27,421 900 

(D)  5 10,684  900 

 

Table 3 

The number of consultation 

clients between stations 

 station sending consultations 

 No 1 2 3 4 5 

station 

accepting 

consultations 

1 0 85 85 25 96 

 2 14 0 500 50 41 

 3 14 500 0 50 41 

 4 40 9 9 0 63 

 5 33 4 4 5 0 

 

Table 4 

 

 

Table 5 

Distance between terminal 

areas 

 1 2 3 4 5 

1 0 15 20 20 30 

2 15 0 20 20 30 

3 20 20 0 15 20 

4 20 20 15 0 20 

5 30 30 20 20 0 

 
In the parameter settings, the meta-heuristic 

techniques of this research are implemented 30 

times and separately from each other, and the 

variables are selected according to the 

efficiency of the best effects. 

 

5.1. Setting the variables of the MBO 

technique 
In the MBO technique, several variables are 

checked, including: These variables are, 

population, neighborhood, and subscription, 

shake. 

Table 6 presents the population parameters 

with values of 71, 61, 51 and 41. Input, 

Distance to the entrance of the station and 

size of the area 

  

Area No Size Distance to the 

entrance (x) 

1  900  15 

2  900 15 

3 900 25 

4  900 25 

5  900  35 
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neighbor, and share variables are set to 30, 13, 

and 1, respectively. As you can see in Table 6, 

the best mean value in the population = 71 is 

obtained. It can also be seen in Table 7 that the 

best mean value is obtained in input =30’.  

       ‘Table 7 evaluates the input parameters 

with values of 60, 50, 40 and 30. The 

neighborhood, subscription and population 

parameters are fixed at 1, 13 and 71, 

respectively. 

        In Table 8, the neighborhood variables 

are evaluated with values of 10, 8, 6 and 4. 

Sharing, shaking, and population parameters 

are fixed at 1, 30, and 71, respectively. 

       Based on the performance of MBO 

technique, the minimum value of the 

neighboring variable can be attributed to the 

number 3. According to equation (3), if m = 3, 

the sharing variable (q) can only be 1. So, the 

sharing variable does not need to be checked 

and we set its size to 1. 

According to the tables obtained from the 

analysis of variables and data, the best data of 

the MBO technique are given in Table No. 9’.  

 

5.2. TS variable setting 

      'Three different variables are investigated 

in the TS technique. These numbers and 

parameters include the length of the taboo, the 

long-term penalty, and the long-term penalty’. 

 
Table 6 

Variable setting of population. 

Fixed measures Population 
Value 

Fitness 
Average 

Parameter Value   
Input 30 41 10347907,36 

Neighbor 13 51 10381693,10 

Share 1 61 10340936,30 

  71 10290422,95 

 
Table 7 

Variable setting of flap. 

Fixed measure Flap 
Value 

Fitness 
Average 

Parameter Value   
Population 71 30 10237226,00 

Neighbor 13 40 10276514,80 

Share 1 50 10302385,16 

  60 10256843,93 

 

 
 

Table 8 
Neighborhood variable setting 
Fixed measures Neighbor 

Value 
Fitness 
Average 

Measure Value   
Population 71 4 10224283,63 

Input 30 6 10275433,16 

Share 1 8 10305913,26 

  10 10269533,46 

 
Table 9 

The best data for MBO. 

Measurers Value 

Population 71 

Input 30 

Neighbor 13 

Share 1 

 
Table 10 

 
 

 In ‘Table 10, the taboo length data with 
values of 50, 50, 30 and 20 are tested and 
evaluated. Long-term fine and long-term 
data are fixed at 110 and 10 by definition. As 
you can see from the data in Table 10, the 
best value of the process is obtained at tabu 
length = 40. 
Based on table number 11, we see that; the 

long-term penalty data is evaluated at different 

values of 30, 25, 20 and 15. The long-term and 

taboo parameters are fixed at 110 and 40, 

respectively. According to the information in 

Table 11, the best process value for a long-

term penalty is = 30’. 

Table 12 evaluates and evaluates different 

long-term length numbers and data with 120, 

110, 100 and 90 test values. The data of taboo 

length and long-term penalty are fixed at 

constant values of 30 and 40, respectively. As 

shown in Table 12, the best mean value is 

obtained in the long run = 90’. 

Variabl setting of tabu length. 

Fixed measure Tabu 
length 
Value 

Fitness 
Average 

Measure Value   
Penalizing 
long term 

71 20 11324842,17 

  30 11162677,17 

long term 
length 

110 40 11000656,80 

  50 11293773,77 
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       The best data related to the TS technique 

according to the observations and results 

obtained are given in Table No. 13. 
Table 11 

Measure setting of penalizing long term. 

Fixed Measure Penalizing 

long term 

Fitness 

Measure Value Value Average 

tabu 

length 

40 15 11163603,20 

  20 11391634,70 

long term 

length 

110 25 11268883,43 

  30 11133662,73 

 

Table 12 

Measure setting of long term length. 

Fixed measure s long term 

length 

Fitness 

Measure Value Value Average 

tabu length 40 90 10979242,50 

  100 10991153,00 

long term 

length 

30 110 11203683,33 

  120 11203941,57 

 

Table 13 

Best measures for the TS. 

Measures                         

Value 

tabu length 40 

penalizing long term 30 

long term length 90 

 
6. Practical results 
       Considering that the problem of allocation 

of terminal facilities is a special problem, then 

the effects of this problem cannot be compared 

with the effects of standard problems in similar 

literature. However, this issue is not only 

solved by ‘MBO but also by TS and SA 

methods to evaluate performance efficiency. 

Tests are performed with an Intel (R) Core 

(TM) i5-3330 @ 3.00 GHz processor, 1 GB of 

RAM and Ubuntu 14.04 (64-bit) Linux 

operating system. All techniques and 

algorithms are coded with QT Creator 3.1.1 

gcc compiler and C++ language. For each 

technique, the algorithms are run 30 times 

separately to obtain the overall results. Each 

test runs for 120 seconds. Depending on the 

data settings, 120 seconds seems sufficient for 

both techniques. Parking maps obtained from 

tests, TS, SA and MBO’ and it is given in table 

number 14. 

According to the observations and parameters 

of Table No. 14, the best effect obtained from 

the SA algorithm is equal to 10142858, which 

is about 1.2% worse than the MBO and SA 

techniques. For system design and current 

terminal design, the best results of MBO and 

SA techniques and their algorithms are given 

in Table 15’. 

Based on the data obtained from ‘Table 15, 

parking lots 0-3 are located on the 0th floor of 

Z-Block. Also with the number of 

consultations, people seem to pour into the 

lounge from every terminal station.. 

Considering the number of parking spaces of 

the stations and the distance to the main hall, it 

seems logical that the halls should be placed on 

the 0th floor of the block. Stations 6 and 7 are 

located on the 0th stage without blocks, 

parking lots 13 and 14 are located on the 0th 

bottom of Block A, and parking lots 25 and 26 

are located on the 1st stage of Block X. It can 

also be seen from Table No. 15, the layout of 

the proposed station and the existing parking 

layout are generally distinct, except for 

parking lots 10 and 17. Both are located on the 

1st stage of Y-Block. Also, the appropriateness 

and allocation values of the proposed plan are 

given in Table 15’. According to the proposal, 

the allocation of the terminal layout has been 

improved. 

The convergence rate of ‘TS and MBO 

techniques is closer to each other and faster 

than SA technique. But the efficiency obtained 

from the SA technique is better than the TS and 

MBO’ methods according to the worst results 

and the average. 
Table 14 

Results from MBO, SA and TS. 

 Method   

 MBO TS SA 

Min. 10142858,0 10254993,0 10142858,0 

Avg. 10236622,3 11054517,2 10158826,4 

Worst 0652954,0 11872704,0 10331548,0 
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Table 15 

Existing and proposed station design 

Block Floor Proposed 

station Layout 

Existing 

station 

Layout 

X-Block 0 13, 15, 29, 9 29, 23, 31, 22 

 1 26, 26, 5, 13 8, 16, 25, 31 

Y-Block 0 4, 6, 8, 12 15, 18, 18, 28 

 1 10, 28, 17, 24 10, 11, 19, 21 

Z-Block -1 19, 17, 31, 23 12, 21, 4, 5 

 0 2, 0, 4, 1 6, 7, 8, 27 

 1 18, 9, 16, 25 13, 15, 25, 26 

 2 21, 28, 31, 21 0, 1, 4, 3 

Fitness Value 10, 141, 847 17, 423, 012 

 
According to the results obtained from all three 

meta-heuristic techniques that are analyzed 

and tested practically. To check whether there 

is a significant difference between the 

techniques used, we use the Wilcoxon 

criterion. There is no important difference 

between the two measured techniques under 

the assumption of ‘H0. There is a fundamental 

difference between these two techniques 

measured by the alternative hypothesis H1. 

The acceptable value of H0 hypothesis is set at 

95%. In this way, if the distance of each 

technique is less than 5% (a = 0.05), there is 

not much distance between two techniques. 

The results of the techniques are recorded in 

Table No. 16 at a significance level of 5%’. 

 
Table 16 

Wilcoxon test results. 

p-values 

TS&MBO SA&MBO TS &SA 

0.001 0,148 0.001 

 
According to the results obtained in table 
number 16, there is no important difference 
between ‘SA and MBO techniques (0.148> 
0.05). According to the results obtained 
from the tests, it can be seen that there is an 
acceptable difference between TS and MBO 
techniques with SA and TS techniques 
(<0.05)’. 
 

7. Conclusion and discussion 
 
In the end, we will examine the optimization 

issues of urban life that we can face in many 

areas of our real life. In these cases, ‘meta-

heuristic techniques are used to solve practical 

optimization subjects. Placing different bodies 

in appropriate areas in the issue of facility 

allocation increases operational efficiency by 

improving system costs, implementation and 

process time. The location of the stations 

inside the terminal plays an important role in 

determining the commuting time of customers 

and terminal employee. The transfer time of a 

customer is to visit a station without an 

intermediary for service or to receive service 

from a station to a secondary station. The 

lengthening of these transfer times leads to a 

longer stay in the terminal and a decrease in the 

terminal's performance. Therefore, the precise 

designation of these walking stations ensures 

the optimal use of terminal electricity and 

minimizes unnecessary separation between 

customers, employees and tourists, and 

increases the productivity of the terminal. In 

this study, we used TS, SA and MBO meta-

algorithms to allocate station space for a real-

scale terminal. Based on the results obtained 

from the experiences, the success of TS, SA 

and MBO techniques in facility allocation 

problems is tested on a transportation problem 

and it is observed that the total cost of SA and 

MBO’ techniques is very better than TS 

technique. ‘When we compare the fit value 

generated from the applied results with the fit 

value available in a system, we see that our 

method performs well. As a result, technology 

can be used to allocate terminal stations. For 

future work, some constraints and assumptions 

can be added to the problem. As if a customer 

has several turns at several stations or some 

passengers need support to move. The re-

completion operation of each section can also 

be considered’. 
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 Vector control methods in induction motors based on proportional-

integral (PI) and proportional-integral-derivative (PID) controllers with 

fixed gains are not effective against changes in system parameters, load 

changes, temperature changes, magnetic saturation, and other 

disturbances due to their strong dependence on machine parameters. 

 In vector control systems, motor flux and torque control are performed 

by determining the currents and spatial angles of the vectors, which are 

not very accurate due to instantaneous oscillations in the load and 

changes in rotor resistance. In many industrial applications, the stable 

and precise performance of these controllers is challenged. To deal with 

these problems, there is a need for an adaptive control system that can 

dynamically adjust the controller gains. The use of fuzzy logic 

controllers (FLC) due to their high flexibility, adaptability to different 

operating conditions, and improved dynamic response, without the 

need for a precise mathematical model of the system, can adjust of 

control strategies based on linguistic rules and fuzzy sets. In this paper, 

an induction motor indirect vector control method is replaced with a 

fuzzy logic controller. The results of simulation and evaluation of the 

method in different conditions show that the use of fuzzy control leads 

to improved stability, reduced speed, and torque oscillations, reduced 

system response delay, and increased control accuracy and can be a 

suitable alternative to classical controllers in industrial applications in 

systems requiring precise and stable performance. 
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1. Introduction 

AC motor drives require high-efficiency performance 

due to their numerous industrial applications. In these 

drives, the motor speed must follow the desired 

reference speed trajectory with less influence from load 

changes, parameter changes, and motor model 

estimation errors. For this purpose, the vector control 

method was proposed. In this method, the design of an 

appropriate controller plays a decisive role in the drive 

performance. 

Unfortunately, there are problems such as high 

sensitivity to machine parameters such as rotor time 

constant, and the need for accurate flux measurement 

and estimation in the vector control method. 

                                                      

1 Model Reference Adaptive Control 
2 Sliding-Mode Control 
3 Variable Structure Control 
4 Self - tuning PI controller 

The fixed-gain PI and PID controllers, which are 

commonly used in speed control drives, are very 

sensitive to changes in parameters and load changes, so 

the parameters of these controllers must be continuously 

adapted to the prevailing environmental and load 

conditions. This problem can be solved to some extent 

by various techniques such as Model Reference 

Adaptive Control (MRAC)1[1], Sliding Mode Control 

(SMC)2[2], Variable Structure Control (VSC)3[3], Self-

Tuning PI Controllers4[4] and some other methods. 

Controller design in all the above methods requires a 

more accurate mathematical model of the system, but 

determining the exact mathematical model of the system 
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is often difficult due to reasons such as uncertain load 

changes and uncertain changes in parameters due to 

conditions such as temperature changes and system 

disturbances [5, 6]. 

To overcome these problems, fuzzy logic controllers 

(FLC)5 can be used [7-10]. 

In a general comparison between classical PI and PID 

controllers and adapted fuzzy controllers, the following 

advantages are observed [11, 12]: 

1. These controllers do not require an accurate 

mathematical model of the system. 

2. They are easy to implement in systems with 

nonlinear and complex behavior. 

3. The structure of this type of controllers is based 

on the linguistic rules common among humans and 

can be implemented through “IF-Then” statements, 

which itself expresses the proximity of this logic to 

life in human societies. 

In order to achieve better performance, the indirect 

vector control method is simulated with the help of 

a fuzzy controller, and its results are presented. 

 

2. Indirect Vector Control of Induction Motors 

The stages of vector control at induction motor by 

indirect method and by precise tracking of the rotor 

field are given below [13, 14]: 

First step) Sampling of a stator and Calculating the 

real value of Longer and Transverse Components 

of Stator current in rotor flow Coordinates: 

 

 

 

(1) 

 

 

 

 

(2) 

 

 

Second step) Calculate the amount of the rotor flux 

linkage by estimated  
estr

ψ  , angular slip angle 

frequency  sl  , and rotor angle position e  . For 

sl  : 

 

(3) 

 

 

 

(4) 

 

                                                      

5 Fuzzy Logic Controller 

And for the rotor flux linkage, we can write: 

 

 

(5) 

 

 

Third Step) Determine the Reference Current 
*
dsi : 

The speed control in this study is below the base 

speed b . Therefore, 
*
dsi  is calculated using the 

following relationship: 
 

(6) 
 

 

Where 
*

r is the reference value of the rotor flux 

space phasor and its nominal value can be obtained 

through the steady-state model of the induction 

machine in the constant torque region of the 

induction machine's speed-torque curve. 
 

Fourth Step) Determine the Reference Current :
*
qsi   

The torque-producing component in an induction 

motor is the reference current, 
*
qsi , and can be 

calculated from 
*
eT  as follows: 

 

(7) 
 

 

In Equation (7), 
*
eT , represents the reference 

electromagnetic torque, P, denotes the number of 

pole pairs in the machine, and 
*
qsi  corresponds to 

the reference value of the transverse (quadrature-

axis) component of the stator current." 
 

To achieve 
*
eT , the motor speed is initially 

sampled. Then, the error between the desired 

reference speed and the actual motor speed is 

processed through a proportional-integral (PI) 

speed controller, which generates the reference 

torque 
*
eT . 

 

Fifth Step) Converting reference currents 
*
dsi  and 

*
qsi  into three-phase currents 

*
ai , 

*
bi , and 

*
ci  

through equations (8) and (9): 
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Sixth Step) Applying three-phase reference 

currents to a current-controlled PWM inverter: 

At this stage, the current error resulting from the 

three-phase reference currents and the sampled 

currents is applied to a hysteresis controller with a 

specific hysteresis band to generate the necessary 

pulses for the inverter. 

The general block diagram of indirect control of an 

induction motor using the FOC method based on 

the above six steps with Current-controlled VSI 

voltage source inverter will be as shown in Figure 

(1). 

In this block diagram, the speed controller is of the 

PI type and its role is to keep the actual speed of 

the motor equal to the reference speed in both 

steady-state and transient states with good dynamic 

response. 
 

 

 

 

 
Figure 1. General block diagram of indirect vector control of an induction motor using the FOC method 

 

 

The curves related to the start-up of a three-phase 

squirrel cage induction motor sample without load 

and at a speed lower than the rated speed are shown 

in Figure (2). As can be seen, the motor speed has 

reached the reference speed after approximately 

1.9s. The results of the study of the dynamic 

behavior with respect to changes in load torque and 

reference speed are also shown in Figure (3). In this 

figure, the reference speed of the running motor has 

increased to 150 radians/second, which is the rated 

speed of the motor. Also, after a certain period of 

time, a load torque of 100 N.m has been applied to 

the motor. 
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Figure 2. The curves related to the start-up of a three-

phase squirrel cage induction motor sample without load 

and at a speed lower than the rated speed 

 

 

Figure 3. dynamic behavior with respect to changes in 

load torque and reference speed 

 

3. Fuzzy vector control 

Fuzzy logic techniques are of significant use in 

solving many problems in various sciences [15-

17]. These techniques play a particularly important 

role in the control of engineering processes. Fuzzy 

logic controllers (FLC) allow the setting of control 

strategies based on linguistic rules and fuzzy sets, 

due to their high flexibility, adaptability to different 

operating conditions, and improved dynamic 

response, without the need for an accurate 

mathematical model of the system. 

Due to the high sensitivity of the vector control 

method to machine parameters such as the rotor 

time constant, the need for accurate flux 

measurement and estimation, etc., classical PI 

controllers are not very suitable for this method. 

For this reason, the controller in the vector control 

method is replaced by a fuzzy PI controller. 

PI controllers are used as one of the most important 

controllers due to their simple structure and robust 

performance. The transfer function of these 

controllers is as follows: 

 

(10) 

 

The success of a PI controller depends on the 

appropriate choice of its gains, A and B. In 

practice, determining the PI gains that will provide 

optimal efficiency is not a simple task and must be 

derived with the help of expert experience and 

based on a number of general rules. 

In a speed control system, the goal is to achieve a 

fast rise time with the least overshoot. 

Therefore, the set of rules of the fuzzy control 

system is obtained empirically and based on the 

step response. Figure (4) shows a typical response 

of a process to a step input. 

 

Figure 4 A typical response of a process to a step unit 

input 

Around point “a”, a large control signal is needed, 

so we can say: If the error between the reference 

speed and the actual speed of the motor is large, 

then pk  should be large and ik , small. 

At points “b” and “d”, the speed changes with 

respect to time are large and the error between the 

reference speed and the actual speed is small, so we 

can write: If the speed changes with respect to time 

(acceleration) are large and the speed error is small, 

Then pk  and ik  are both small because large pk

causes large overshoot and large ik  causes the 

system to oscillate. 

s

k
kG i

P 
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At point e, the error between the reference speed 

and the actual speed is zero and the speed changes 

with respect to time are also almost zero, so we 

have: If the speed error is zero and the acceleration 

is also zero, then pk  should be small and ik , large 

So that the steady-state error in the system is 

reduced. A similar behavior to point “a” can also 

be proposed for “c” point. 

Based on the above expressions, the desired fuzzy 

controller can be prepared for replacement in the 

vector control method. For this purpose, one fuzzy 

controller is considered for determining the value 

and another fuzzy controller is considered for 

determining. 

The fuzzy inference system used in this paper is of 

the Mamdani type. This system has features such 

as its efficiency in ambiguous environments, the 

use of human knowledge, and the ability to find the 

optimal solution to the problem from a large 

number of available solutions. 

The membership functions used in these controllers 

are trapezoidal and triangular, which are defined as 

follows: 

 

 

 

 

 (11) 

 

 

 

 

 

 

In the above expressions, if b = c, the triangular 

membership function will be obtained. 

The methods used for combining and summing the 

rules are also in accordance with the following 

relation expressions: 

 

min                           :       And Method 

max              :       Or Method 

min                           :        Implication  

max              :        Aggregation 

center of gravity :        Defuzzification 

 

The defuzzification method used is the center of 

gravity method, which is defined as follows: 

 

 

 

(12) 

 

Where N is the number of fuzzy rules used and 

  ikc  is the membership degree of the output 

for the kth rule. 

Figure (5) shows the membership functions and 

fuzzy rules related to the pk  fuzzy controller. In 

this figure, the first input of the fuzzy controller is 

the error of the reference speed and the measured 

speed, which is represented by “e”, and the second 

input is the acceleration or change in speed with 

respect to time, which is represented by “a”. 

 

 

 (13) 

 

 

 (14) 

 
Figure 5. membership functions and fuzzy rules related to 

the pk  fuzzy controller 

Figure (6) shows the membership functions and 

fuzzy rules related to the ik  fuzzy controller. The 

inputs of this controller are the velocity error “e” 

and acceleration “a” and its output is the desired 

numerical value for ik  according to the fuzzy rules  

used. 
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Figure 6. membership functions and fuzzy rules related to 

the ik  fuzzy controller 

By replacing the block corresponding to the 

classical controller in the conventional vector 

control method with the blocks of fuzzy controllers 

and the necessary sections, the fuzzy vector control 

method was simulated on a motor with the same 

specifications and under similar transient 

conditions. The simulation results are shown in 

Figures (7), (8), and (9). 

 

 

 
Figure 7 . The curves related to the start-up of a induction 

motor sample without load and at a speed lower than the 

rated speed with fuzzy logic controller 

 

 
Figure 8. dynamic behavior with respect to the reference 

speed increase with fuzzy logic controller 

 

 

 
Figure 9. Dynamic behavior with increasing motor load 

using a fuzzy logic controller 

 

 

The curves related to the changes in the ik and pk  

gains and the ratio of the speed change curve are 

presented in Figure (10). By observing this figure 

and the previously presented fuzzy rules, the result 

of applying fuzzy rules and using fuzzy controllers 

can be seen. 
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Figure 10.  

Figure (11) presents the simultaneous response of 

the induction motor starting curves using the 

classical vector control method and the fuzzy 

vector control method. 

 

 
Figure 11.  

As can be seen in Figure (11), in the fuzzy method, 

the speed of the induction motor will reach the 

desired reference speed in less time. Also, the 

steady state error in this case is almost zero. 

The rate of speed overshoot from the desired 

reference speed is very small and can be reduced 

further by better and more appropriate selection of 

membership functions and their parameters and the 

use of fuzzy rules. 

However, the fuzzy vector control method is one of 

the reliable application method of speed control of 

induction motors, which in addition to its 

simplicity increases the speed and accuracy of the 

system response under variable environmental 

conditions and motor parameters. Of course, the 

practical implementation of this method is possible 

using fast digital signal processors (DSP6). 

 

                                                      

6 Digital signal Processing 

4. Specifications of the squirrel cage induction 

motor used in the simulations 

The specifications of the induction motor used in 

the simulations are as follows: 

Table 1. Specifications of the induction motor 
Nominal value Parameter 

50 HP (37kW) Pn 

400 V Vn 

50 Hz fn 

1480 rpm Nn 

0.08233 Ω Rs 

0.724 mH Lls 

0.0503 Ω R’rs 

0.724 mH L,lr 

27.11 mH Lm 

0.37 kg.m2 J 

0.02791 N.m.s f 

2 (Pair of poles) P 

 

5. Conclusion 

Using the fuzzy vector control method, on the one 

hand, improves the speed and accuracy of the 

system's response to sudden changes in the load 

torque or the applied reference speed, and on the 

other hand, by using a fuzzy controller instead of a 

classic controller, the high sensitivity of the control 

system to changes in environmental conditions and 

changes in engine parameters is reduced. So that 

changing the proportional and integral gains of the 

controller during system operation tries to create a 

desired response in following the desired reference 

speed and responding to changes in the load torque 

in loads that have uncertain behavior. 

The fuzzy control method in determining the 

controller gains compared to fixed-gain controllers 

includes other advantages such as simplicity, no 

need for an accurate mathematical model of the 

system, and faster response to unwanted changes in 

the load characteristics and engine model. 
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 In light of its excellent learning accuracy and rate, rapid data 

processing, and independence from large databases for network 

training, the U-Net architecture is a well-known and popular deep 

learning architecture for image segmentation and feature extraction. 

Learning rate selection and updating are crucial in network training. As 

U-Net is a completely nonlinear network, classical mathematical 

optimization algorithms increase the probability of local optima. This 

analytical research paper used the grasshopper optimization algorithm 

(GOA) as a metaheuristic approach to optimize the learning rate of U-

Net. The network was trained using 256*256 CT images of the lungs 

of COVID-19 infected and uninfected individuals. A total of 400 CT 

images were employed as the training dataset, whereas 80 CT images 

were used as the testing data. Coding was implemented in MATLAB. 

The optimization of the learning rate enhanced image segmentation 

accuracy by 2.23%. Iterative metaheuristic algorithms would lead to 

longer network training times. However, the proposed network 

optimization method could be very useful when large databases are not 

available for network training and higher accuracy is preferred over 

time savings. 
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1. Introduction 

U-Net is a convolutional neural network proposed 

by researchers at the University of Fribourg in 

2015 for biomedical image segmentation 

purposes. Designed through convolutional 

networks, the U-Net architecture accelerates 

processing and enhances learning accuracy based 

on limited training data samples. Figure 1 depicts 

the U-Net architecture and the operations in its 

different layers [1, 2].  

The architecture of U-Net is based on an encoder-

decoder model, where the encoder part of the 

network learns to extract high-level features from 

the input image, while the decoder part of the 

network learns to reconstruct the output image 

from the learned features. The U-Net model also 

includes skip connections between the encoder 

and decoder layers. These skip connections allow 

the decoder layers to use the features learned by 

the corresponding encoder layers, which helps to  

 

 

preserve spatial information and improve the 

accuracy of segmentation [3]. 

 

 
Figure 1. U-Net architecture. 

One of the key advantages of U-Net is its ability 

to perform well with limited training data. This is 
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achieved by using data augmentation techniques 

such as rotation, flipping, and scaling during 

training. Additionally, U-Net can be modified to 

work with various input sizes, making it a 

versatile architecture for a wide range of image 

segmentation tasks. U-Net has been extensively 

implemented in medical imaging applications, 

such as tumor detection and cell segmentation, as 

well as in other image segmentation tasks, 

including the segmentation of roads and buildings 

in satellite imagery [4, 5]. The accuracy of the 

network's learning can be enhanced by employing 

appropriate parameters for its training.  
 

2. Materials and Methods 

To obtain optimal convergence in the learning 

process of a neural network, it is necessary to 

optimize the loss function [6]. Extensive and 

useful interactions between optimization and 

machine learning methods have been important 

breakthroughs in state-of-the-art computing. 

Many optimization problems in engineering 

sciences are complex and cannot be solved 

through conventional optimization approaches, 

such as mathematical programming. Heuristic 

(or approximate) algorithms can be used to solve 

such problems. These algorithms would not 

guarantee that the optimal solution is the exact 

solution to the problem and can only obtain a 

relatively accurate solution in a long time; the 

accuracy of the solution varies with time [7, 8].  

 

3. Data Description 

Preprocessing is necessary to enhance the 

quality of image segmentation. The 

preprocessing stage involves various operations 

such as image size reduction, noise reduction, 

and histogram equalization [9]. To ensure the 

network is trained more accurately and to reduce 

the computational load, the dimensions of the 

images were scaled down to 256x256. To train 

the network, a dataset of lung CT images of 

COVID-19 infected patients and uninfected 

individuals with was used. A total of 400 CT 

images were utilized as the training dataset, 

whereas 80 CT images were used as the testing 

data. This dataset is publicly available on the 

Kaggle website. MATLAB R2020b was used to 

implement the codes on a computer equipped 

with an intel core i7 processor running at 2.8 

GHz, along with 16GB of RAM and 4GB GPU. 

 

4. Proposed Method 

In the U-Net architecture, it has been observed 

that the initialization of the learning rate among 

its hyperparameters has a significant impact on 

the accuracy of the network [10]. During the 

training process of the network, a certain 

scheduling strategy is employed to gradually 

decrease the initial learning rate, which in turn 

helps to minimize the loss function. Two 

hyperparameters affect the performance of the 

training process, i.e., the learning rate drop 

factor and the learning rate drop period. The 

former is a value between 0 and 1 that 

determines the rate at which the learning rate 

decreases while the latter is the number of 

epochs after which the learning rate is decreased 

[11]. 

As U-Net is a completely nonlinear network, the 

use of classical mathematical optimization 

algorithms increases the probability of local 

optima. Hence, metaheuristic algorithms can be 

employed to obtain solutions closer to global 

optima at the cost of execution time [12]. 

Learning rate selection and updating are 

essential. A sub-optimal learning rate 

excessively lengthens the convergence of the 

network, leading to trapping in local minima. On 

the other hand, an over-optimal learning rate 

would diminish network performance, with the 

network likely to neglect the most optimal 

solution to the problem [13]. It should also be 

noted that the initiation of the learning rate is 

crucial since different initiation points result in 

different paths, playing a key role in local and 

global minima [14]. Equation (1) represents the 

role of the learning rate () in network training.                  

θ=θ-
∂L(θ)

∂θ
                (1) 

where θ represents the parameter that minimizes 

the loss function (L). This parameter can be 

assumed to denote network weights [15]. The 

scheduling of the learning rate can be used to 

improve stochastic gradient descent performance 

to update the weights. An optimal learning rate 

minimizes the iterations of the stochastic 

gradient descent and, thus, reduces the 

computational burden [16]. 

This paper adopted the grasshopper optimization 

algorithm (GOA) to optimize the learning rate 

hyperparameter in U-Net training to enhance 

image segmentation accuracy. A visual 

representation of the step-by-step process used 

in our proposed method can be seen in Figure 2. 
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Figure 2. Diagram of the proposed method. 

 

5. GOA 

The GOA was introduced by Mirjalili et al. 

(2017). It is a metaheuristic algorithm inspired by 

the behavior of grasshopper swarms. It exploits 

swarm intelligence and is a population-based 

algorithm.  

Exploration and exploitation are the two main 

features of metaheuristic algorithms. The 

configuration of a metaheuristic algorithm is 

determined by the interaction of these two 

features. Mirjalili et al. (2017) claimed that the 

lifecycle of grasshoppers intrinsically had the 

exploration and exploitation features; immature 

grasshoppers (nymphs) have soft, continuous 

movements and play the exploitation role, while 

mature ones have completely stochastic and 

jumpy movements and play the exploration role. 

These two features simultaneously exist in 

grasshopper swarms; therefore, efficient modeling 

of grasshopper behavior would provide a 

relatively powerful optimization algorithm. The 

GOA model for position updating of each 

grasshopper is written as: 

xi
d(t+1)=c (∑ c

ubd-lbd

2

npop

j=1,j≠i s(|xj(t)-

xi(t)|)
xj(t)-xi(t)

dij(t)
)+T̂d(t)                     (2) 

where ubd is the upper bound and lbd denotes the 

lower bound of the solution space in dimension d. 

Furthermore, Td(t) denotes the best solution found 

until iteration t in dimension d, and c is a 

decreasing factor. 

The social force function is defined as: 

s(d)=fe
-
d

l -e-d              (3) 

where d is the function input and represents the 

distance, f is the intensity of attraction, and l 

represents the attractive length scale. Here, 

function s stands for the effects of social 

interactions (attraction and repulsion) among 

grasshoppers. The behavior of this function is 

dependent on f and l values.  

The adaptive parameter of c appears twice in 

equation (2). The outer c is very similar to the 

inertia weight w in particle swarm optimization 

(PSO) and reduces the movements of 

grasshoppers around the target [17-19]. In other 

words, this parameter moderates the exploration 

and exploitation of the swarm around the target. 

The inner c reduces the attraction zone, comfort 

zone, and repulsive zone between grasshoppers. 

This factor linearly reduces the space in which 

grasshoppers are to explore and exploit based on 

c
ubd-lbd

2
 in equation (2). 

Figure 3 depicts the GOA procedure.  

 

 
Figure 3. GOA flowchart. 

6. Results 

When initializing a neural network and selecting 

its associated hyperparameters, there are typically 

two approaches that can be taken. In the first 

scenario, values are assigned based on empirical 

knowledge or prior experience with similar 

models. The second scenario involves using a 

metaheuristic algorithm to search for optimal 

solutions within a range of values that we know 

empirically has a higher probability of network 

convergence.  

The initial learning rate, learning rate drop factor, 

and learning rate drop period were empirically set 

to 0.003, 0.4, and 8 respectively in the first 

approach. In contrast, these values were 

determined by the GOA in the proposed method. 

It is worth mentioning that in both scenarios, the 

number of epochs was set equal to 80. 

Figure 4 shows the values proposed by the GOA 

for the three hyperparameters and the best cost 

value in the last ten iterations of the algorithm. It 

should be noted that 20 grasshoppers and 30 

iterations were employed in the GOA. 
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Figure 4. Values proposed by the GOA. 

The normalized confusion matrix was calculated, 

as shown in Figure 5. Two classes were employed 

in network training; one label to highlight the 

COVID-19 damaged areas and one label to 

represent the background. 

 

 
Figure 5. a) U-Net confusion matrix, b) Optimized U-Net 

confusion matrix. 

Table 1 provides several tested samples and the 

results of base and optimized segmentation. 

 

6.1. Evaluation Results  

Performance was evaluated using the true 

positive, true negative, false positive, and false 

negative parameters: 

TP: Correct classification of pixels corresponding 

to damaged areas of the lung, 

TN: Correct classification of pixels in 

background regions, 

FP: Pixels corresponding to background regions 

incorrectly classified as damaged regions, 

FN: Pixels corresponding to damaged areas of the 

lung that are incorrectly classified as background 

regions. 

In a CT image of the chest, the positive class 

refers to the damaged lung areas, while the 

negative class corresponds to the background.  

 

 

 

 

 

 

 

Table  1 . Base and optimized CT image segmentation 

Ground Truth 

 

Optimized U-Net  U-Net  Input Image 
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Equations (4-7) represent the evaluation criteria 

[20- 23]. 

Accuracy=
TP +TN

TP+TN+FP+FN
                         (4) 

 

Precision=
TP

TP+FP
             (5) 

 

Recall=Sensitivity=
TP

TP+FN
            (6) 

 

F1-Score=2×
Precision×Recall

Precision+Recall
            (7) 

 

Table 2 compares the base and optimized U-Net 

models based on the confusion matrix and 

evaluation criteria. 

 

Table 2. Evaluation results(%) 

Evaluation Criteria U-Net Optimized U-Net 

Accuracy 90.61 92.84 

Precision 98.74 99.11 

Recall 82.26 86.45 

F1-Score 89.74 92.34 

 

7. Discussion 

As a result of the optimization conducted in this 

research, the accuracy of the entire network for 

CT scan image segmentation has observed an 

increase of 2.23%. Furthermore, it is worth noting 

that the accuracy has significantly improved by 

4.19% in detecting the damaged area. It is 

noteworthy that the optimization method 

discussed here can be applied to all deep learning 

models during the learning process. The 

utilization of meta-heuristic algorithms for 

solving non-linear problems is a widely accepted 

practice. In this research, the GOA was employed 

to optimize the learning rate of the network. In a 

study closely related to the present research, 

Mahesh Kumar et al. were able to enhance the 

accuracy of segmentation in MRI images of brain 

tumors through the utilization of a metaheuristic 

algorithm known as the Adaptive Search Coyote 

Optimization Algorithm (AS-COA) [24]. Another 

study carried out by Popat et al. demonstrated that 

the accuracy of a neural network for the 

segmentation of Retina Blood Vessels can be 

improved by optimizing its parameters using the 

genetic algorithm [25]. Nevertheless, the 

challenge of increasing network learning time 

cannot be overlooked. Also, evaluating the impact 

of optimizing other critical hyperparameters 

during the network training process, such as batch 

size, can be investigated. 

 

8. Conclusion 

This paper implemented GOA to optimize the U-

Net learning rate and enhance the segmentation 

accuracy of CT images of the chest to enable 

accurate detection of COVID-19 infected areas 

within the lungs. Although iterative metaheuristic 

algorithms lengthen training, they are very useful 

in network optimization when large databases are 

not available for network training and improved 

accuracy is preferred over time savings. To 

optimize hyperparameters in such models, it is 

important to assume a larger grasshopper 

population and a larger number of iterations to 

obtain a more optimal solution. In other words, 

this optimization approach is more useful in 

network training with smaller databases and low-

resolution images. 
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