BICYCLIC GRAPHS WITH MINIMUM AND MAXIMUM FORGOTTEN AND INVERSE DEGREE INDICES
Subject Areas : Algebraic Structures and Optimizationmohammad ali manian 1 , Shahram Heidarian 2 * , ّFarhad Khaksar Haghani 3
1 - Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
2 - Department of Mathematics, Shahrekord Branch, Islamic Azad University,Shahrekord, Iran
3 - Member of the faculty of Shahrekord Azad University
Keywords: graph transformations, bicyclic graphs, forgotten index , inverse degree index,
Abstract :
In chemical graph theory, the forgotten index and inverse degree index of a connected simple graph G are defined as F(G) = ∑ 〖d_u^2+d_v^2 〗and ID(G) = ∑1/d_u respectively, where d_u represents the degree of vertex u in G. In this paper, we use some graph transformations and determine the minimum and the maximum values of the forgotten index and the inverse degree index on the class of bicyclic graphs. In addition, we characterize their corresponding extremal graphs.
[1] V. Bozovic, Z. Kovijanic, G. Popivoda, Extremal values of total multiplicative sum Zagreb index and rst multiplicative sum Zagreb coindex on unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 78 (2017) 417-430
[2] R. Cruz, J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. chem. 59 (2021) 1098-1116
[3] K. C. Das, S. Sorgun, On Randic energy of graph, MATCH Commun. Math. Comput. Chem. 72
(2014) 227-238. [4] M. Dehmer, F. Emmert-Streid, M. Grabner, A computational approach to construct a mul- tivariate complate graph invariant, Inf. Sci. 260 (2014) 200-208
. [5] D. Dimitrov, On structured properties of tree with minimal atom-bond connectivity index II: bound on B1 and B2-branches, Discrete Appl. Math. 204 (2016) 90-116
. [6] D. Dimitrov, Z. Du, C. M. da Foneseca, On structured properties of tree with minimal atom- bond connectivity index III: trees with pendant path of length three, Appl. Math. Comput. 282
(2016) 279-290. [7] S. Fajtlowicz, On conjectures of Grati-II, Congr. Number 60(1978) 187-197.
[8] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53(2015) 1184-1190. [9] I. Gutman, N. Trinajstic, Graph theory and molecular orbital total ' fi- electron energy of alternanthy-drocarbons, Chem. Phys. Lett. 17 (1972) 535-538
. [10] Y. Huang, H. Liu, Bounds of modied Sombor index, spectral radius energy, AIMS Math. 6
(2021) 11263-11274. [11] H. Liu, L. You, Y. Huang, Ordering chemical graphs by Sombor indices and its applications, MATCH Commun. Math. Comput. Chem. 87 (2022) 5-22
. [12] M. A. Manian, S. Heidarian, F. khaksar Haghani, Maximum and minimum values of inverse degree and forgotten indices on the class of all unicyclic graphs, AKCE Int. J. graphs Comb. 20
(2023) 57-60. [13] M. A. Manian, S. Heidarian, F. khaksar Haghani, On extremal values of total structure connectivity and Narumi-Katayama indices on the class of all unicyclic and bicyclic graphs, Iranian J. Math. Chem. 14 (2023) 171-181
. [14] J. Meng, B. Wu, Basic properties of total transformation graphs, J. Math. study 34 (2001) 109-116
. [15] H. Wiener, Structural determination of paran boiling points, J. Am. Chem. Soc. 69 (1947) 17-20
. BHK. Xu, I. Gutman, The largest Hosoya index of bicyclic graphs with given maximum degree, MATCH Commun. Math. Comput. Chem. 66 (2011) 795-824. [16] S. Zhang, H. Zhang, Unicyclic graphs with the rst three smallest and largest rst general Zagreb index, MATCH Commun. Math. Comput. Chem. 55(2006) 427-438
. [17] T. Zhou, Z. Lin, L. Miao, The Sombor index of tree and unicyclic graphs with given maximum degree, discrete Math. Lett. 7 (2021) 24-29
.