A Novel Design of an Active Low 2:4 Decoder using Quantum-Dot Cellular Automata
Subject Areas : Journal of Optoelectronical NanostructuresReza Pourtajabadi 1 , Maryam Nayeri 2 , Mohamad Reza Shayesteh 3
1 - Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
2 - Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
3 - Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
Keywords:
Abstract :
Quantum-dot cellular automata (QCA) is a nanoscale technology with unique features compared to the silicon-based technology that has been recently used in the design of combinational and sequential logic circuits. Today, QCA is a well-known technology for the design of digital systems and provides a modern pattern for information processing and communication with higher speed, higher integration scale, higher switching frequency, and less power consumption compared to silicon-based technology. In this paper, the QCA technology is used to design an active-low 2:4 decoder using an active-high decoder. The initial scheme is optimized and an independent active-low decoder is presented. In the optimized structure, the number of cells, and the occupied space are decreased significantly followed by power consumption reduction and an increase in the output signal level compared to the initial scheme. The number of required clock phases to generate the output is also reduced to three. Design and simulation are carried out in QCA Designer.
[1] J. C. Jeon, Designing nanotechnology QCA–multiplexer using majority function-based NAND for quantum computing. J Supercomput 77. (2021). 1562–1578. https://link.springer.com/article/10.1007/s11227-020-03341-8
[2] A. B. Newaz, M. Billah, M. M. R. Bhuiyan, M. Abdullah-Al-Shafi, K. Ahmed, & M. Asaduzzaman, Ultra-efficient convolution encoder design in quantum-dot cellular automata with power dissipation analysis, Alexandria Engineering Journal. 57, (2018), 3881–3888. https://www.sciencedirect.com/science/article/pii/S1110016818301820
[3] F. Khatib, and M. Shahi, Ultra-fast all-optical symmetry 4× 2 encoder based on interface effect in 2D photonic crystal. Journal of Optoelectronical Nanostructures, 5(3), (2020), pp.103-114. https://jopn.marvdasht.iau.ir/article_4407.html
[4] E. Rafiee, and F. Abolghasemi, An All-Optical NOR Gate based on Two-Dimensional Photonic Crystals, Journal of Optoelectronical Nanostructures, 8(1), (2023), pp.47-57. https://jopn.marvdasht.iau.ir/article_5896.html
[5] Z. Rohani, and A. A. Emrani Zarandi, Designing a Novel high-speed ternary-logic multiplier using GNRFET Technology. Journal of Optoelectronical Nanostructures, 8(1), (2023) pp.1-12. https://jopn.marvdasht.iau.ir/article_5800.html
[6] C. S. Lent, P. Tougaw, W. Porod, and G. Bernstein, Quantum cellular automata, Nanotechnology, 4(1), (1993), 49-57. https://iopscience.iop.org/article/10.1088/0957-4484/4/1/004/meta
[7] D. Manna, C. Mukherjee, A. Banerjee, M. Dhar, S. Panda, and B., Maji, Towards Energy-Efficient Cost-Effective Toffoli Gate Design using Quantum Cellular Automata. In 2023 IEEE Devices for Integrated Circuit (DevIC), (2023), 56-60. https://ieeexplore.ieee.org/abstract/document/10135003
[8] E. Blair, Electric Field Inputs for Molecular Quantum-dot Cellular Automata Circuits,” in IEEE Transactions on Nanotechnology, 18, (2019), 453-460. https://ieeexplore.ieee.org/abstract/document/8693662
[9] R. D. Schaller and V. I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals, Implications for solar energy conversion, Physical Review Letters, 92, (2004), 186-196. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.186601
[10] N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S.S. Ruvimov, M.V. Maximov, P.S. Kopev, ZH.I. Alferov, U. Richter, P.Werner, U. Gosele, J. Heydenreich, Low-threshold, large To injection-laser emission from (InGa)As quantum dots, Electronics Letters, 30, (1994), 1416-1417. https://www.elibrary.ru/item.asp?id=25882085
[11] P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, Quantum dot opto-electronic devices, Annual Review of Materials Research, 34, (2004), 1-40. https://www.annualreviews.org/content/journals/10.1146/annurev.matsci.34.040203.111535
[12] C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Triggered single photons from a quantum dot, Physical Review Letters, 86, (2001), 1502-1505. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.86.1502
[13] S. Maimon, E. Finkman, G. Bahir, S. E. Schacham, J. M. Garcia, and P. M. Petroff, Intersublevel transitions in InAs/ GaAs quantum dots infrared photodetectors, Applied Physics Letters, 73, (1998), 2003-2005. https://pubs.aip.org/aip/apl/articleabstract/73/14/2003/69140/Intersublevel-transitions-in-InAs-GaAs-quantum
[14] R. Roy, S. Sarkar, and S. Das, Multilayer Structure of a New Portable, Low-Cost and Reversible Arithmetic and Logic Unit using High-Speed and Low-Power QCA Technology with Good-Scalability, International Journal of Recent Technology and Engineering (IJRTE), 8(4), (2019), 10568-10575. https://www.ijrte.org/download/volume-8-issue-4/
[15] S. Dindigul, Efficient Design of Logical Structures and Functions using Nanotechnology Based Quantum Dot Cellular Automata Design, International Journal of Computer Applications, 3(5), (2010), 35-42. https://www.ijcaonline.org/archives/volume3/number5/726-1019/
[16] L. W. Cheng, and B. L. Wei, XOR module based adder applications design using QCA. Journal of VLSI circuits and systems 5(2) (2023), 36-42. https://vlsijournal.com/index.php/vlsi/article/view/70
[17] B. Y. Galadima and G. S. M. Galadanci, QCA-BASED design of reversible hamming code encoding, decoding and correcting circuits, International Journal of Basic and Applied Sciences, 13(2), (2024), 18-20. https://www.sciencepubco.com/index.php/ijbas/article/view/32777
[18] I. Amlani, A. O. Orlov, G. L. Snider, C. S. Lent, and G. H. Bernstein, Demonstration of a functional quantum-dot cellular automata cell, Journal of Vacuum Science & Technology Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16(6) (1998), 3795-3799. https://pubs.aip.org/avs/jvb/article-abstract/16/6/3795/1080050/Demonstration-of-a-functional-quantum-dot-cellular
[19] A. O. Orlov, R. K. Kummamuru, R. Ramasubramaniam, G. Toth, C. S. Lent, G. H. Bernstein, G. L. Snider, Experimental demonstration of a latch in clocked quantum-dot cellular automata, Applied Physics Letters, 78, (2001), 1625-1627. https://pubs.aip.org/aip/apl/article-abstract/78/11/1625/514471/Experimental-demonstration-of-a-latch-in-clocked
[20] E. P. Blair, and C. S. Lent. Quantum-dot cellular automata: an architecture for molecular computing. Simulation of Semiconductor Processes and Devices. SISPAD 2003. IEEE, 2003, 14-18. https://ieeexplore.ieee.org/abstract/document/1233626
[21] Y. Lu, and C. S. Lent. Theoretical study of molecular quantum dot cellular automata. Journal of Computational Electronics, 4(2), (2005), 115-118. https://link.springer.com/article/10.1007/s10825-005-7120-y
[22] C. S. Lent, B. Isaksen, and M. Lieberman. Molecular quantumdot cellular automata. Journal of the American Chemical Society, 125(4) , (2003), 1056-1063. https://pubs.acs.org/doi/abs/10.1021/ja026856g
[23] A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 5758 (2006), 205-208. https://www.science.org/doi/abs/10.1126/science.1120506
[24] R. Pourtajabadi and M. Nayeri, A Novel Design of a Multi-Layer Decoder Using QCA, Journal of Optoelectronical Nanostructures, 4(1), (2019), 39-50. https://jopn.marvdasht.iau.ir/article_3384.html
[25] A. Kumar, and B. Subhashish. A Review of Quantum Dot Cellular Automata for High Speed Applications. Annuals of the Romanian Society for Cell Biology (2021), 9614-9621. http://annalsofrscb.ro/index.php/journal/article/view/3704
[26] P. Jayanta, M. Noorallahzadeh, and J. S. Sharma, Regular clocking scheme based design of cost-efficient comparator in QCA, Indonesian Journal of Electrical Engineering and Computer Science, 21(1), (2021), 44-55. https://ijeecs.iaescore.com/index.php/IJEECS/article/view/22478
[27] H. Balijepalli, and M. Niamat, Design of a Nanoscale Quantum-dot Cellular Automata Configurable Logic Block for FPGAs, International Midwest Symposium on Circuits and Systems, (2012), 622-625. https://ieeexplore.ieee.org/abstract/document/6292097
[28] K. Makanda, and J. C. Jeon, Combinational Circuit Design Based on Quantum-Dot Cellular Automata, International Journal of Control and Automation, 7(6), (2014), 369-378. https://www.earticle.net/Article/A230052
[29] M. Kumar and T. N. Sasamal, An Optimal Design of 2-to-4 Decoder circuit in Coplanar Quantum dot Cellular Automata, Energy Procedia 117, (2014), 369-378. https://www.sciencedirect.com/science/article/pii/S1876610217324074
[30] S. Riki and F. S. Hassani, A Robust Single Layer QCA Decoder Using A Novel Fault Tolerant Three Input Majority Gate, Journal of Optoelectronical Nanostructures, 7(3), (2022), 23-45. https://jopn.marvdasht.iau.ir/article_5336.html