FDTD Analysis of a High-Sensitivity Refractive Index Sensing Based on Fano Resonances in A Plasmonic Planar Split-Ring Resonators
Subject Areas : Journal of Optoelectronical NanostructuresMohsen Nasrolahi 1 , Ali Farmani 2 , ashkan horri 3 , Hossein Hatami 4
1 - Department of Electrical Engineering, Islamic Azad University, Arak, Iran
2 - Department of Electrical Engineering, Lorestan University, Khoramabad, Iran
3 - Department of Electrical Engineering, Islamic Azad University, Arak, Iran
4 - Department of Electrical Engineering, Lorestan University, Khoramabad, Iran
Keywords: Ring resonator, Plasmonics sensor, FDTD,
Abstract :
A tunable label-free refractive index biosensor based on plasmonic planar split-ring resonators is proposed. The effects of Fano resonances are studied to harness the transmission spectra in near-infrared region. In the structure, dual hexagonal ring resonators are utilized to realize the Fano resonances with the advantages of high sensitivity, large figure of merit, narrow full wave at half-maximum (FWHM), and extremely large Q-factor. Analytical and numerical outcomes display that, by slight variation of the refractive index and geometrical modes resonances can be manipulated. A high sensitivity of 1160 nm/RIU with a FoM as large as 33 is achieved. Besides, the proposed biosensor shows a relatively narrow FWHM of 50 nm, which introduces a high Q-factor of 31. Such this moderately high Q-factor ensures that the structure exhibits extreme low resonance losses that can be advantageous for high resolution detections with acceptable accuracy. Nano Fano resonance sensing is a technique used in nanophotonics for highly sensitive detection of bioanalytes. It leverages the Fano resonance effect, which arises from interference between a discrete state and a broadband continuum of states. This can lead to sharp asymmetric peaks in the absorption or scattering spectrum.
[1] Barnes, William L., Alain Dereux, and Thomas W. Ebbesen. "Surface plasmon subwavelength optics." nature 424.6950 (2003): 824-830. Available: https://doi.org/10.1038/nature01937.
[2] Wu, Wenjun, et al. "Ultra-high resolution filter and optical field modulator based on a surface plasmon polariton." Optics letters 41.10 (2016): 2310-2313.Available: https://doi.org/10.1364/OL.41.002310
[3] Wu, Dong, et al. "Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region." Optics letters 42.3 (2017): 450-453.Available: https://doi.org/10.1364/OL.42.000450
[4] Yu, Yue, et al. "Plasmonic wavelength splitter based on a metal–insulator–metal waveguide with a graded grating coupler." Optics letters 42.2 (2017): 187-190. https://doi.org/10.1364/OL.42.000187
[5] Chen, Lei, et al. "Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity." Optics express 24.9 (2016): 9975-9983.Available: https://doi.org/10.1364/OE.24.009975
[6] Shen, Yang, et al. "Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit." Nature communications 4.1 (2013): 2381, Available: https://doi.org/10.1038/ncomms3381
[7] Srivastava, Triranjita, Ritwick Das, and Rajan Jha. "Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide." Plasmonics 8 (2013): 515-521.Available:
https://doi.org/10.1007/s11468-012-9421-x
[8] Maisonneuve, M., et al. "Phase sensitive sensor on plasmonic nanograting structures." Optics express 19.27 (2011): 26318-26324.Available: https://doi.org/10.1364/OE.19.026318
[9]Elsayed, Mohamed Y., Yehea Ismail, and Mohamed A. Swillam. "Semiconductor plasmonic gas sensor using on-chip infrared spectroscopy." Applied Physics A 123.1 (2017): 113.Available: https://doi.org/10.1007/s00339-016-0707-2
[10] Rosenzveig, Tiberiu, Petur G. Hermannsson, and Kristjan Leosson. "Modelling of polarization-dependent loss in plasmonic nanowire waveguides." Plasmonics 5 (2010): 75-77.Available: https://doi.org/10.1007/s11468-009-9118-y
[11] Zhang, Zhongyue, et al. "Numerical investigation of a branch-shaped filter based on metal-insulator-metal waveguide." Plasmonics 6 (2011): 773-778., Available: https://doi.org/10.1007/s11468-011-9263-y
[12] Wei, Hong, et al. "Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure." Nano Letters 15.1 (2015): 560-564.Available: https://doi.org/10.1021/nl504018q
[13] Chen, Chyong-Hua, and Kao-Sung Liao. "1xN plasmonic power splitters based on metal-insulator-metal waveguides." Optics express 21.4 (2013): 4036-4043.Available: https://doi.org/10.1364/OE.21.004036
[14] Chen, Zhao, et al. "Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems." Optics Communications 320 (2014): 6-11.Available: https://doi.org/10.1016/j.optcom.2013.12.079
[15] Chen, Li, et al. "A subwavelength MIM waveguide filter with single-cavity and multi-cavity structures." Optik-International Journal for Light and Electron Optics 124.18 (2013): 3701-3704., Available: https://doi.org/10.1016/j.ijleo.2012.11.025
[16] Wu, Tiesheng, et al. "The sensing characteristics of plasmonic waveguide with a ring resonator." Optics express 22.7 (2014): 7669-7677.Available: https://doi.org/10.1364/OE.22.007669
[17] Lodewijks, Kristof, et al. "Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications." Plasmonics 8 (2013): 1379-1385.Available: https://doi.org/10.1007/s11468-013-9549-3
[18] Francescato, Yan, Vincenzo Giannini, and Stefan A. Maier. "Plasmonic systems unveiled by Fano resonances." ACS nano 6.2 (2012): 1830-1838.Available: https://doi.org/10.1021/nn2050533
[19] Hao, Feng, et al. "Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing." ACS nano 3.3 (2009): 643-652.,Available: https://doi.org/10.1021/nn900012r
[20] Rybin, Mikhail V., et al. "Fano resonances in antennas: General control over radiation patterns." Physical Review B—Condensed Matter and Materials Physics 88.20 (2013): 205106.Available: https://doi.org/10.1103/PhysRevB.88.205106
[21] Fan, Jonathan A., et al. "Fano-like interference in self-assembled plasmonic quadrumer clusters." Nano letters 10.11 (2010): 4680-4685.Available: https://doi.org/10.1021/nl1029732
[22] Fano, Ugo. "Effects of configuration interaction on intensities and phase shifts." Physical review 124.6 (1961): 1866.Available: https://doi.org/10.1103/PhysRev.124.1866
[23] Zhang, Shunping, et al. "Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications." Nanoscale 5.15 (2013): 6985-6991. Available: https://doi.org/10.1039/C3NR01219K
[24] Gallinet, Benjamin, and Olivier JF Martin. "Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures." ACS nano 7.8 (2013): 6978-6987.Available: https://doi.org/10.1021/nn4021967
[25] Prodan, Emil, et al. "A hybridization model for the plasmon response of complex nanostructures." science 302.5644 (2003): 419-422.Available: 10.1126/science.1089171
[26] Wang, H. U. I., et al. "Plasmonic nanostructures: artificial molecules." Accounts of chemical research 40.1 (2007): 53-62.Available: https://doi.org/10.1021/ar0401045
[27] D’Agostino, Stefania, Fabio Della Sala, and Lucio Claudio Andreani. "Radiative coupling of high-order plasmonic modes with far-field." Photonics and Nanostructures-Fundamentals and Applications 11.4 (2013): 335-344.Available: https://doi.org/10.1016/j.photonics.2013.06.003
[28] Halas, Naomi J., et al. "Plasmons in strongly coupled metallic nanostructures." Chemical reviews 111.6 (2011): 3913-3961.Available: https://doi.org/10.1021/cr200061k
[29] Liu, Jui-Nung, et al. "Resonant coupling from photonic crystal surfaces to plasmonic nanoantennas: principles, detection instruments, and applications in digital resolution biosensing." Smart Photonic and Optoelectronic Integrated Circuits XX. Vol. 10536. SPIE, 2018.Available: https://doi.org/10.1117/12.2285828
[30] Miroshnichenko, Andrey E., Sergej Flach, and Yuri S. Kivshar. "Fano resonances in nanoscale structures." Reviews of Modern Physics 82.3 (2010): 2257-2298.Available: https://doi.org/10.1103/RevModPhys.82.2257
[31] Verellen, Niels, et al. "Fano resonances in individual coherent plasmonic nanocavities." Nano letters 9.4 (2009): 1663-1667.Available: https://doi.org/10.1021/nl9001876
[32] Sheikholeslami, Sassan, et al. "Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer." Nano letters 10.7 (2010): 2655-2660.Available: https://doi.org/10.1021/nl101380f
[33] Mukherjee, Shaunak, et al. "Fanoshells: nanoparticles with built-in Fano resonances." Nano letters 10.7 (2010): 2694-2701.Available: https://doi.org/10.1021/nl1016392
[34] Y." Sonnefraud, N. Verellen, H. Sobhani, GA E. Vandenbosch, VV Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, ibid 4 (2010): 1664.
[35] Chu, Ming-Wen, et al. "Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam." Nano letters 9.1 (2009): 399-404.Available: https://doi.org/10.1021/nl803270x
[36] Firoozi, A., Khordad, R., & Rastegar Sedehi, H. R. (2023). Modelling of nanosensors based on localised surface plasmon resonance. Philosophical Magazine, 103(22), 2054-2071., Available: https://doi.org/10.1080/14786435.2023.2255143
[37] Yang, Shu-Chun, et al. "Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes." Nano letters 10.2 (2010): 632-637.Available: https://doi.org/10.1021/nl903693v
[38] Firoozi, A., Amphawan, A., Khordad, R., Mohammadi, A., Jalali, T., Edet, C. O., & Ali, N. (2023). Effect of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of plasmon-exciton hybrid nanoshells for sensing application. Scientific Reports, 13(1), 11325. Available: https://doi.org/10.1038/s41598-023-38475-1
[39] Firoozi, A., Khordad, R., & Rastegar Sedehi, H. R. (2024). Study of enhanced sensitivity of nanosensors by using gold bowtie nanoparticles. Journal of Nonlinear Optical Physics & Materials, 33(05), 2350057. Available: https://doi.org/10.1142/S0218863523500571
[40] Dehghani, M., Hatami, M., & Gharaati, A. (2021). Research Paper Supercontinuum Generation in Silica Plasmonic Waveguide by Bright Soliton. Journal of Optoelectronical Nanostructures, 6(4), 109-136. Available: 10.30495/JOPN.2022.28937.1236
[41] Mansuri, M., Mir, A., & Farmani, A. (2019). Numerical modeling of a nanostructure gas sensor based on plasmonic effect. Journal of Optoelectronical Nanostructures, 4(2), 29-44. Available: 20.1001.1.24237361.2019.4.2.3.3
[42] Farmani, A., Mir, A., & Sharifpour, Z. (2018). Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Applied Surface Science, 453, 358-364. Available: https://doi.org/10.1016/j.apsusc.2018.05.092
[43] Farmani, A., Miri, M., & Sheikhi, M. H. (2017). Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. JOSA B, 34(6), 1097-1106. Available: https://doi.org/10.1364/JOSAB.34.001097
[44] Farmani, A. (2019). Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B, 36(2), 401-407. Available: https://doi.org/10.1364/JOSAB.36.000401
[45] Farmani, A., Zarifkar, A., Sheikhi, M. H., & Miri, M. (2017). Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices and Microstructures, 112, 404-414. Available: https://doi.org/10.1016/j.spmi.2017.09.051
[46] Moradiani, F., Farmani, A., Mozaffari, M. H., Seifouri, M., & Abedi, K. (2020). Systematic engineering of a nanostructure plasmonic sensing platform for ultrasensitive biomaterial detection. Optics Communications, 474, 126178. Available: https://doi.org/10.1016/j.optcom.2020.126178
[47] Hamzavi-Zarghani, Z., Yahaghi, A., Matekovits, L., & Farmani, A. (2019). Tunable mantle cloaking utilizing graphene metasurface for terahertz sensing applications. Optics Express, 27(24), 34824-34837. Available: https://doi.org/10.1364/OE.27.034824
[48] Amoosoltani, N., Zarifkar, A., & Farmani, A. (2019). Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. Journal of Computational Electronics, 18, 1354-1364. Available: https://doi.org/10.1007/s10825-019-01391-7
[49] Sadeghi, T., Golmohammadi, S., Farmani, A., & Baghban, H. (2019). Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory. Applied Physics B, 125, 1-12. Available: https://doi.org/10.1007/s00340-019-7305-x
[50] Salehnezhad, Z., Soroosh, M., & Farmani, A. (2023). Design and numerical simulation of a sensitive plasmonic-based nanosensor utilizing MoS2 monolayer and graphene. Diamond and Related Materials, 131, 109594. Available: https://doi.org/10.1016/j.diamond.2022.109594
[51] Hamza, Musa N., et al. "Development of a Terahertz Metamaterial Micro-Biosensor for Ultrasensitive Multispectral Detection of Early-Stage Cervical Cancer." IEEE Sensors Journal (2024).Available: 10.1109/JSEN.2024.3447728
[52] Amoosoltani, N., Yasrebi, N., Farmani, A., & Zarifkar, A. (2020). A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation effect. IEEE Sensors Journal, 20(16), 9097-9104. Available: 10.1109/JSEN.2020.2987319
[53] Khajeh, A., Hamzavi-Zarghani, Z., Yahaghi, A., & Farmani, A. (2021). Tunable broadband polarization converters based on coded graphene metasurfaces. Scientific Reports, 11(1), 1296. Available: https://doi.org/10.1038/s41598-020-80493-w
[54] Khani, S., Farmani, A., & Mir, A. (2021). Reconfigurable and scalable 2, 4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method. Scientific Reports, 11(1), 13628. Available: https://doi.org/10.1038/s41598-021-93167-y
[55] Moradiani, F., Farmani, A., Yavarian, M., Mir, A., & Behzadfar, F. (2020). A multimode graphene plasmonic perfect absorber at terahertz frequencies. Physica E: Low-dimensional Systems and Nanostructures, 122, 114159. Available: https://doi.org/10.1016/j.physe.2020.114159
[56] Farmani, H., & Farmani, A. (2020). Graphene sensing nanostructure for exact graphene layers identification at terahertz frequency. Physica E: Low-dimensional Systems and Nanostructures, 124, 114375. Available: https://doi.org/10.1016/j.physe.2020.114375
[57] Fouladi, H., Farmani, A., & Mir, A. (2023). Rigorous Investigation of Ring Resonator Nanostructure for Biosensors applications in breast cancer detection. Journal of Optoelectronical Nanostructures, 8(4), 97-119. Available: 10.30495/JOPN.2024.32304.1299
[58] Hamza, Musa N., Mohammad Tariqul Islam, Slawomir Koziel, Muhamad A. Hamad, Iftikhar ud Din, Ali Farmani, Sunil Lavadiya, and Mohammad Alibakhshikenari. "Designing a High-sensitivity Microscale Triple-band Biosensor based on Terahertz MTMs to provide a perfect absorber for Non-Melanoma Skin Cancer diagnostic." IEEE Photonics Journal (2024). Available: 10.1109/JPHOT.2024.3381649
[59] Zangeneh, A. M. R., Farmani, A., Mozaffari, M. H., & Mir, A. (2022). Enhanced sensing of terahertz surface plasmon polaritons in graphene/J-aggregate coupler using FDTD method. Diamond and Related Materials, 125, 109005. Available: https://doi.org/10.1016/j.diamond.2022.109005
[60] M. Soroosh, A. Mirali, E. Farshidi. Ultra-Fast All-Optical Half Subtractor Based on Photonic Crystal Ring Resonators. Journal of Optoelectronical Nanostructures., 5(1) (2020) 83-100. Available: https://dorl.net/dor /20.1001.1.24237361.2020.5.1.6.1
[61] Khosravian, E., Mashayekhi, H. R., & Farmani, A. (2021). Highly polarization-sensitive, broadband, low dark current, high responsivity graphene-based photodetector utilizing a metal nano-grating at telecommunication wavelengths. JOSA B, 38(4), 1192-1199. Available: https://doi.org/10.1364/JOSAB.418804
[62] Jafrasteh, F., Farmani, A., & Mohamadi, J. (2023). Meticulous research for design of plasmonics sensors for cancer detection and food contaminants analysis via machine learning and artificial intelligence. Scientific Reports, 13(1), 15349. Available: https://doi.org/10.1038/s41598-023-42699-6
[63] Farmani, A., & Omidniaee, A. (2024). Observation of Plasmonics Talbot effect in graphene nanostructures. Scientific Reports, 14(1), 1973. Available: https://doi.org/10.1038/s41598-024-52595-2
[64] Mohammadi, M., Soroosh, M., Farmani, A., & Ajabi, S. (2023). Engineered FWHM enhancement in plasmonic nanoresonators for multiplexer/demultiplexer in visible and NIR range. Optik, 274, 170583. Available: https://doi.org/10.1016/j.ijleo.2023.170583
[65] X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, C. Yan, Photonic Sensors 8(4), 367 (2018) https://doi.org/10.1007/s13320-018-0509-6
[66] R. Zafar, M. Salim, IEEE Sensors Journal 15(11), 6313 (2015) Available: 10.1109/JSEN.2015.2455534
[67] R. Zafar, S. Nawaz, G. Singh, A. d’Alessandro, M. Salim, IEEE Sensors Journal (2018) Available: 10.1109/JSEN.2018.2826040
[68] F. Pakrai, M. Soroosh, and J. Ganji. Designing of all-optical subtractor via PC-based resonators. Journal of Optoelectronical Nanostructures., 7(2) (2022) 21-36. Available: https://doi.org/10.30495/JOPN.2022.29545.1246
[69] B. Elyasi and S. Javahernia. All optical digital multiplexer using nonlinear photonic crystal ring resonators. Journal of Optoelectronical Nanostructures., 7(1) (2022) 97-106. Available: https://doi.org/10.30495/jopn.2022.29174.1242
[70] F. Khatib and M. Shahi. Ultra-Fast All-Optical Symmetry 4×2 Encoder Based on Interface Effect in 2D Photonic Crystal. Journal of Optoelectronical Nanostructures., 5(3) (2020) 103-114. Available: https://dorl.net/dor/20.1001.1.24237361.2020.5.3.7.6