Designing of all-optical subtractor via PC-based resonators
Subject Areas : Journal of Optoelectronical NanostructuresForogh Pakrai 1 , Mohammad Soroosh 2 * , jabbar ganji 3
1 - Department of Electrical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran.
2 - Department of Electrical Engineering, Shahid Chamran University of Ahvaz, Ahvaz,Iran.
3 - Department of Electrical Engineering, Mahshahr Branch, Islamic Azad University,Mahshahr, Iran.
Keywords: Photonic Crystal, Half-subtractor, Optical Kerr effect, Resonant ring,
Abstract :
Abstract Using a photonic crystal array, an all-optical
half-subtractor has been designed that consists of four
resonant rings and some waveguides which connect two
input ports to output ports. The silicon rods with a period
of 0.631 μm are arranged in the form of a square.
Concerning the four working states of the device,
different radii of nonlinear rods inside the resonators
have been chosen. This issue makes the different
switching thresholds for the rings and results in the
correct dropping operation for optical waves. Unlike the
previous works, each bit is defined to one port, and the
input ports have equal power. The maximum rise time
and the contrast ratio of the presented circuit are 3.5 ps
and 8.45 dB, respectively. The fast response and small
size are the main advantages of the presented subtractor.
The obtained results demonstrates that the designed
device has an acceptable performance which is proper for
optical applications.
[1] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58(23) (1987, June) 2486–2489. Available: https://doi.org/10.1103/PhysRevLett.58.2486
[2] E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett., 58(20) (1987, May) 2059–2062. Available: https://doi.org/10.1103/PhysRevLett.58.2059
[3] S. M. Mirjalili and S. Z. Mirjalili. Issues when designing hypoellipse photonic crystal waveguides. Infrared Phys. Technol., 69 (2015, Mar.) 62–67. Available: https://doi.org/10.1016/j.infrared.2015.01.003
[4] S M. Mirjalili and S. Z. Mirjalili. Asymmetric Oval-Shaped-Hole Photonic Crystal Waveguide Design by Artificial Intelligence Optimizers. IEEE J. Sel. Top. Quantum Electron., 22(2) (2016, Mar.) 258–264. Available: https://doi.org/10.1109/JSTQE.2015.2469760
[5] R. Massoudi, M. Najjar, F. Mehdizadeh, and V. Janyani. Investigation of resonant mode sensitivity in PhC based ring resonators. Opt. Quantum Electron., 51(3) (2019, March) 87. Available: https://doi.org/10.1007/s11082-019-1793-0
[6] H. Alipour-Banaei and F. Mehdizadeh. High sensitive photonic crystal ring resonator structure applicable for optical integrated circuits. Photonic Netw. Commun., 33(2) (2016, April) 152–158. Available: https://doi.org/10.1007/s11107-016-0625-4
[7] M. Youcef Mahmoud, G. Bassou, A. Taalbi, and Z. M. Chekroun. Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun., 285(3) (2012, Feb.) 368–372. Available: https://doi.org/10.1016/j.optcom.2011.09.068
[8] A. Taalbi, G. Bassou, and M. Youcef Mahmoud. New design of channel drop filters based on photonic crystal ring resonators. Opt. - Int. J. Light Electron Opt., 124(9) (2013, May) 824–827. Available: https://doi.org/10.1016/J.IJLEO.2012.01.045
[9] M. Youcef Mahmoud, G. Bassou, and A. Taalbi. A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Opt. - Int. J. Light Electron Opt., 124(17) (2013, Sep.) 2864–2867. Available: https://doi.org/10.1016/j.ijleo.2012.08.072
[10] V. Fallahi and M. Seifouri, Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices. J. Optoelectron. Nano Struc., 4(2) (2019) 53-68. Available: http://jopn.miau.ac.ir/article_3478.html
[11] V. Fallahi and M. Seifouri, Novel Four-Channel All Optical Demultiplexer Based on Square PhCRR for Using WDM Applications. J. Optoelectron. Nano Struc., 3(4) (2018) 59-70. Available: http://jopn.miau.ac.ir/article_3262.html
[12] Z. Zare, A. Gharaati, Investigation of thermal tunable nano metallic photonic crystal filter with mirror symmetry. J. Optoelectron. Nano Struc., 3 (3) (2018) 27-36. Available: jopn.miau.ac.ir/article_3043.html
[13] E. Rafiee and F. Emami, Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals. J. Optoelectron. Nano Struc., 1(2) (2016) 39-46. Available: http://jopn.miau.ac.ir/article_2047.html
[14] R. Talebzadeh, M. Soroosh, Y S. Kavian, and F. Mehdizadeh. All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photonic Netw. Commun., 34(2) (2017, Feb.) 248-57. Available: https://doi.org/10.1007/s11107-017-0688-x
[15] R. Talebzadeh, M. Soroosh, and F. Mehdizadeh. Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators. Opt. Appl., XLVI(4) (2016, Dec.) 553–564. Available: https://doi.org/10.5277/oa160404
[16] R. Talebzadeh, M. Soroosh, and T. Daghooghi. A 4-Channel Demultiplexer Based on 2D Photonic Crystal Using Line Defect Resonant Cavity. IETE J. Res., 62(6) (2016, Nov.) 866–872.
Available: https://doi.org/10.1080/03772063.2016.1217175
[17] R. Talebzadeh, M. Soroosh, Y S. Kavian, and F. Mehdizadeh. Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities. Opt. Int. J. Light Electron Opt., 140 (2017, July) 331–337. Available: https://doi.org/10.1016/j.ijleo.2017.04.075
[18] F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi. Design and simulation of all optical decoder based on nonlinear PhCRRs. Opt. - Int. J. Light Electron Opt., 156 (2018, Mar.) 701–706. Available: https://doi.org/10.1016/j.ijleo.2017.12.011
[19] S. Khosravi and M. Zavvari. Design and analysis of integrated all-optical 2 × 4 decoder based on 2D photonic crystals. Photonic Netw. Commun., 35(1) (2017, July) 122–128.
Available: https://doi.org/10.1007/s11107-017-0724-x
[20] T. Daghooghi, M. Soroosh, and K. Ansari-Asl. Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators. Appl. Opt., 57(9) (2018, March) 2250–2257.
Available: https://doi.org/10.1364/AO.57.002250
[21] S. Salimzadeh and H. Alipour-Banaei. A novel proposal for all optical 3 to 8 decoder based on nonlinear ring resonators. J. Mod. Opt. [Online]. 65(17) (2018, June) 2017–2024.
Available: https://doi.org/10.1080/09500340.2018.1489077
[22] A. Salimzadeh and H. Alipour-Banaei. An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators. Opt. Commun., 410 (2018, March) 793–798.
Available: https://doi.org/10.1016/j.optcom.2017.11.036
[23] S. Gholamnejad and M. Zavvari. Design and analysis of all-optical 4--2 binary encoder based on photonic crystal. Opt. Quantum Electron., 49(9) (2017, Aug.) 302.
Available: https://doi.org/10.1007/s11082-017-1144-y
[24] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh. Proposal for realizing an all-optical half adder based on photonic crystals. Appl. Opt., 57(7) (2018) 1617-1621.
Available: https://doi.org/10.1364/AO.57.001617
[25] A. Rahmani and F. Mehdizadeh. Application of nonlinear PhCRRs in realizing all optical half-adder. Opt. Quantum Electron. [Online]. 50(1) (2017, Dec.) 30. Available https://doi.org/10.1007/s11082-017-1301-3
[26] M. Neisy, M. Soroosh, and K. Ansari-Asl. All optical half adder based on photonic crystal resonant cavities. Photonic Netw. Commun., 35(2) (2018. April) 245–250.
Available: https://doi.org/10.1007/s11107-017-0736-6
[27] M. M. Karkhanehchi, F. Parandin, and A. Zahedi. Design of an all optical half-adder based on 2D photonic crystals. Photonic Netw. Commun., 33(2) (2017, april) 159–165.
Available https://doi.org/10.1007/s11107-016-0629-0
[28] A. Andalib. A novel proposal for all-optical Galois field adder based on photonic crystals. Photonic Netw. Commun., 35(3) (2018, Jan.) 392–396. Available: https://doi.org/10.1007/s11107-017-0756-2
[29] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh. A novel proposal for all optical 1-bit comparator using nonlinear PhCRRs. Photonics Nanostructures - Fundam. Appl. 34. (2019, May) 19–23. Available: https://doi.org/10.1016/j.photonics.2019.01.002
[30] A. Surendar, M. Asghari, and F. Mehdizadeh. A novel proposal for all-optical 1-bit comparator using nonlinear PhCRRs. Photonic Netw. Commun., 38(2) (2019, Oct.) 244-249.
Available: https://doi.org/10.1007/s11107-019-00853-z
[31] L. Zhu, F. Mehdizadeh, and R. Talebzadeh. Application of photonic-crystal-based nonlinear ring resonators for realizing an all-optical comparator. Appl. Opt., 58(30) (2019, Oct.) 8316–8321.
Available: https://doi.org/10.1364/AO.58.008316
[32] SMH. Jalali, M. Soroosh and G. Akbarizadeh . Ultra-fast 1-bit comparator using nonlinear photoniccrystal based ring resonators, J. Optoelectron. Nano Struc., 4(3) (2019) 59-72. Available: http://jopn.miau.ac.ir/article_3620.html
[33] S. S. Zamanian-Dehkordi, M. Soroosh, and G. Akbarizadeh. An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures. Opt. Rev., 25(4) (2018.Aug.) 523-531.
Available: https://doi.org/10.1007/s10043-018-0443-2
[34] A. Abbasi, M. Noshad, R. Ranjbar, and R. Kheradmand. Ultra compact and fast All Optical Flip Flop design in photonic crystal platform. Opt. Commun., 285(24) (2012, Aug.) 5073–5078.
Available: https://doi.org/10.1016/j.optcom.2012.06.095
[35] T. Zhao, M. Asghari, and F. Mehdizadeh. An All-Optical Digital 2-to-1 Multiplexer Using Photonic Crystal-Based Nonlinear Ring Resonators. J. Electron. Mater., 48(4) (2019, Jan.) 2482-2486. Available: https://doi.org/10.1007/s11664-019-06947-8
[36] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi. A Novel Proposal for All Optical Analog-to-Digital Converter Based on Photonic Crystal Structures. IEEE Photonics J., 9(2) (2017, april) 1–11. Available: https://doi.org/10.1109/JPHOT.2017.2690362
[37] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi. All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron., 49(1) (2017, Jan.) 38.
Available: https://doi: 10.1007/s11082-016-0880-8
[38] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei H, and E. Farshidi. Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt., 56(7) (2017, Feb.) 1799–1806. Available: https://doi.org/10.1364/AO.56.001799
[39] S. Indira Gandhi and T. Sridarshini. Design of photonic crystal based optical digital to analog converters. Laser Phys., 29(4) (2019, March) 046206. Available: https://doi.org/10.1088/1555-6611/ab05d1
[40] D. Jafari, T. Nurmohammadi, M. J. Asadi, and K. Abbasian. All-optical analog-to-digital converter based on Kerr effect in photonic crystal. Opt. Laser Technol., 101 (2018, May) 138–143.
Available: https://doi.org/10.1016/j.optlastec.2017.11.007
[41] A. Tavousi, M. A. Mansouri-Birjandi, and M. Saffari. Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low- dimens. Syst. Nanostruct83 (2016, Sep.) 101-106.
Available: https://doi.org/10.1016/j.physe.2016.04.007
[42] F. Parandin, M R. Malmir, and M. Naseri. All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals. Superlattices Microstruct., 109 (2017, Sep.) 437–441.
Available: https://doi.org/10.1016/j.spmi.2017.05.030
[43] R. Moradi. All optical half subtractor using photonic crystal based nonlinear ring resonators. Opt. Quantum Electron., 51(4) (2019,April) 119. Available: https://doi.org/10.1007/s11082-019-1831-y
[44] A. Askarian, G. Akbarizadeh, and M. Fartash. A novel proposal for all optical half-subtractor based on photonic crystals. Opt. Quantum Electron., 51(8) (2019, July) 264. Available: https://doi.org/10.1007/s11082-019-1978-6
[45] A. Askarian, G. Akbarizadeh, and M. Fartash. All-optical half-subtractor based on photonic crystals. Appl. Opt., 58(22) (2019, Aug.) 5931-5935. Available: https://doi.org/10.1364/AO.58.005931
[46] N. Namdari and R. Talebzadeh. Simple and compact optical half subtractor based on photonic crystal resonant cavities in silicon rods. Applied Optics., 59(1) (2020, Jan.) 165-170.
Available: https://doi.org/10.1364/AO.59.000165.
[47] J. P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. phys. [Online]. 114(2) (1994, Oct.) 185-200. Available: https://doi.org/10.1006/jcph.1994.1159
[48] A. C. Cangellaris. Numerical stability and numerical dispersion of a compact 2-D/FDTD method used for the dispersion analysis of waveguides. IEEE Microw. Guided Wave Lett. [Online]. 3(1) (1993, Jan.) 3-5. Available: https://doi.org/10.1109/75.180672
[49] D. Lowell, S. Hassan, O. Sale, M. Adewole, N. Hurley, U. Philipose, B. Chen, and Y. Lin. Holographic fabrication of graded photonic super-quasi-crystals with multiple-level gradients. Applied Optics. [Online]. 57(22) (2018, Aug.) 6598-6604. Available: https://doi.org/10.1364/AO.57.006598
[50] L. Pang, W. Nakagawa, and Y. Fainman. Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write. Applied Optics. [Online]. 42(27) (2003, Sep.) 5450-5456. Available: https://doi.org/10.1364/ao.42.005450
[51] M. Campbell, D. N. Sharp,M. T. Harrison, R. G. Denning, and A. J. Turberfield. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature. [Online]. 404(6773) (2000, Mar.) 53-56. Available: https://doi.org/10.1038/35003523
[52] D. Lowell, S. Hassan, M. Adewole, U. Philipose, B. Chen, and Y. Lin. Holographic fabrication of graded photonic super-crystals using an integrated spatial light modulator and reflective optical element laser projection system. Applied Optics. [Online]. 56(36) (2017, Dec.) 9888-9891. Available https://doi.org/10.1364/AO.56.009888
[53] Y. Liu, S. Liu, and X. Zhang. Fabrication of three-dimensional photonic crystals with two-beam holographic lithography. Applied Optics. [Online]. 45(3) (2006, Jan.) 480-483. Available: https://doi.org/10.1364/AO.45.000480
[54] H. M. Ku, C. Y. Huang, and S. Chao. Fabrication of three-dimensional autocloned photonic crystal on sapphire substrate. Applied Optics., 50(9) (2011, Mar.) C1-C4.
Available: https://doi.org/10.1364/AO.50.0000C1
[55] O. J. A. Schueller, G. M. Whitesides, J. A. Rogers, M. Meier, and A. Dodabalapur. Fabrication of photonic crystal lasers by nanomolding of solgel glasses. Applied Optics., 38(27) (1999, Sep.) 5799-5802. Available: https://doi.org/10.1364/AO.38.005799
[56] J. H. Chen, Y. T. Huang, Y. L. Yang, M. FLu, and J. M. Shieh. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters. Applied Optics., 51(24) (2012, Aug.) 5876-5884. Available: https://doi.org/10.1364/AO.51.005876
[57] L. Cui, Y. Zhang, J. Wang, Y. Ren, Y. Song, and L. Jiang. Ultra Fast Fabrication of Colloidal Photonic Crystals by Spray Coating. Macromolecular Rapid Communications., 30(8) (2009, April) 598-603. Available: https://doi.org/10.1002/marc.200800694
[58] G. V. Freymann, V. Kitaev, B. V. Lotschz, and G. A. Ozin. Bottom-up assembly of photonic crystals. Chem Soc Rev., 42(7) (2013, Mar.) 2528-2554. Available: https://doi.org/10.1039/c2cs35309a