Investigation of Highly Broadb and Supercontinuum Generation in a Suspended As2Se3 Based Ridge Waveguide
Subject Areas : Journal of Optoelectronical NanostructuresMohammad Reza Alizadeh 1 , Mahmood Seifouri 2 *
1 - Faculty of Electrical Engineering, Shahid RajaeeTeacher Training
University, Tehran, Iran
2 - Faculty of Electrical Engineering, Shahid RajaeeTeacher Training
University, Tehran, Iran
Keywords: dispersion, supercontinuum generation, ridge waveguide, highly nonlinear, Zero- Dispersion Wavelength,
Abstract :
In this paper, the generation of a highly broadband supercontinuum
spectrum has numerically been investigated in a suspended As2Se3 based ridge
waveguide. By changing the dimensions of the proposed waveguide, the dispersion has
been engineered to achieve a suitable profile with the two zero-dispersion wavelengths
as well as the lower magnitude and flat anomalous dispersion regime. Due to the high
refractive index contrast between the core and cladding, the propagated light has been
highly confined in the core and as a result, a high optical nonlinear coefficient has been
obtained. Simulation results show that when the pump pulses with a width of 100 fs and
peak power of 1KW at the wavelength of 2150 nm are injected into the designed
راهنمای موج با طول 0.8 میلی متر ، ابرمتنت تولید شده را می توان در
محدوده طول موج از 1.4 تا 18μm گسترش داد. چنین ساختار راهنمای موج
برای منابع فوق پیوسته مادون قرمز درون تراشه که در
بسیاری از زمینه ها مانند توموگرافی انسجام نوری ، اثر انگشت ، طیف سنجی مولکولی
و غیره بسیار مهم است بسیار قابل استفاده است
[1] Mid-infrared laser applications in spectroscopy, Mid-infrared laser applications in spectroscopy, in Handbook of Solid-State Mid-Infrared Laser Sources, Springer F. K. Tittel, D. Richter, and A. Fried, 2003.
[2] S. Haxha and H. Ademgil. Novel design of photonic crystal fibers with low confinement losses, nearly zero ultraflattened chromatic dispersion, negative chromatic dispersion and improved effective mode area. Opt. Commun 281 (2008) 278–286. Available: https://doi.org/10.1016/j.optcom.2007.09.041
Investigation of Highly Broadband Supercontinuum Generation in a Suspended As2Se3 * 11
[3] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt. Lett. 26 (2001) 608–610.
Available: https://link. springer.com/chapter/10.1007/ 978-3-642-56546-5_73
[4] A. Schliesser, N. Picque, and T. W. Hansch. Mid-infrared frequency combs. Nat. Photonics 6 (2012) 440–449.
Available: https://doi.org/10.1038/nphoton.2012.142
[5] I. D. Aggarwal and J. S. Sanghera. Development and application of chalcogenide glass optic fiber at NRL. J. Optoelectron. Adv. Mater 4 (2002) 665–678. Available: https://doi.org/10.1016/S0022-3093(97)00051-3
[6] A. V. Husakou and J. Herrmann. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87 (2001) 203901. Available: https://doi.org/10.1103/PhysRevLett.87.203901
[7] J. M. Dudley, G. Genty, and S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys 78 (2006) 1135–1184.
Available: https://doi.org/10.1103/RevModPhys.78.1135
[8] G.P. Agrawal, Nonlinear Fiber Optics, 5th ed., Elsevier Academic Press, 2013.
[9] P. Russell. Photonic crystal fibers. Science 299 (2003) 358–362.
Available: 10.1126/science.1079280
[10] J.M. Dudley, J.R. Taylor, Supercontinuum generation in optical fibers, Cambridge University Press, 2010.
[11] B. J. Eggleton, B. L. Davies, and K. Richardson. Chalcognide photonics. Nature Photon. 5 (2011) 141 – 148.
Available: https://doi.org/10.1038/nphoton.2011.309
[12] V. Shiryaev and M. Churbanov. Trends and prospects for development of chalcogenide fibers for mid-infrared transmission. J. Non-Cryst. Solids 377 (2013) 225 – 230. Available: https://doi.org/10.1016/j.jnoncrysol.2012.12.048
[13] J. Hu, C.R. Menyuk, L.B. Shaw, J.S. Sanghera, I.D. Aggarwal. Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. Opt. Express 18 (2010) 6722–6739.
Available: 10.1364/oe.18.006722
[14] T.S. Saini, A. Baili, A. Kumar, R. Cherif, M. Zghal, R.K. Sinha. Design and analysis of equiangular spiral photonic crystal fiber for M-IR supercontinuum generation. Journal Modern Optics 62 (2015) 1570–1576.
12 * Journal of Optoelectronical Nanostructures Autumn 2020 / Vol. 5, No. 4
Available: https://doi.org/10.1080/09500340.2015.1051600
[15] F. Xu, J. Yuan, C. Mei, B. Yan, X. Zhou, Qi. Wu, K. Wang, X. Sang, C. Yu, G. Farrell. Highly coherent supercontinuum generation in a polarization-maintaining CS2-core photonic crystal fiber. Applied Optics 58 (6) (2019) 1386–1392. Available: 10.1364/AO.58.001386
[16] A. Medjouri, D. Abed, Z. Becer. Numerical investigation of a broadband coherent supercontinuum generation in Ga8Sb32S60 chalcogenide photonic crystal fiber with all-normal dispersion. Opto-Electronics Review 27 (1) (2019) 1–9. Available: https://doi.org/10.1016/j.opelre.2019.01.003
[17] M. Seifouri, M.R. Alizadeh. Supercontinuum generation in a highly nonlinear chalcogenide/MgF2 hybrid photonic crystal fiber. International Journal of Optics and Photonics 12 (1) (2018) 69–78.
Available: http://ijop.ir/article-1-277-en.html
[18] H. Balani, G. Singh, M. Tiwari, V. Janyani, A.K. Ghunawat. Supercontinuum generation at 1.55 ىm in As2S3 core photonic crystal fiber. Applied Optics 57 (13) (2018) 3524–3533.
Available: https://doi.org/10.1364/AO.57.003524
[19] M.R. Karim, H. Ahmad, S. Ghosh, B.M.A. Rahman. M-IR supercontinuum generation using As2Se3 photonic crystal fiber and the impact of higher-order dispersion parameters on its supercontinuum bandwidth. Optical Fiber Technology 45 (2018) 255–266. Available: https://doi.org/10.1063/1.5033494
[20] S. Kalra, S. Vyas, M. Tiwari, G. Singh, Multi-material photonic crystal fiber in M-IR region for broadband supercontinuum generation. Optical and Wireless Technologies. Springer (2018) 199–209.
Available:https://www.springerprofessional.de/en/multi-material-photonic- crystal-fiber-in-mir-region-for-broadban/15460216
[21] Bing-Xi Xiang, Lei Wang, Yu-Jie Ma, Li Yu, Huang-Pu Han, Shuang-Chen Ruan. Supercontinuum Generation in Lithium Niobate Ridge Waveguides Fabricated by Proton Exchange and Ion Beam Enhanced Etching. CHIN. PHYS. LETT 34( 2) (2017) 024203.
Available: https://doi.org/10.1088/0256-307X/34/2/024203
[22] J. M. Morris, M. D. Mackenzie, C. R. Petersen, G. Demetriou, A. K. Kar, O. Bang, and H. T. Bookey. Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics. Opt. Mater. Express 8 (2018) 1001–1011. Available: https://doi.org/10.1364/OME.8.001001
[23] N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas- Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. Luther-Davies, S.
Investigation of Highly Broadband Supercontinuum Generation in a Suspended As2Se3 * 13
Madden, D. J. Moss, and B. J. Eggleton. Midinfrared supercontinuum generation from 2 to 6 lm in a silicon nanowire. Optica 2 (2015) 797–802. Available: https://doi.org/10.1364/OPTICA.2.000797
[24] T. S. Saini, A. Kumar, and R. K. Sinha. Design and modelling of dispersion-engineered rib waveguide for ultra broadband mid-infrared supercontinuum generation. J. Mod. Opt. 64 (2016) 143–149.
Available: https://doi.org/10.1080/09500340.2016.1216190
[25] Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies. Experimental demonstration of linearly polarized 2–10ىm supercontinuum generation in a chalcogenide rib waveguide. Opt. Lett. 41 (2016) 958–961. Available: 10.1364/OL.41.000958
[26] T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi. Coherent midinfrared supercontinuum generation using a rib waveguide pumped with 200 fs laser pulses at 2.8 ىm. Appl. Opt. 57 (2018) 1689–1693. Available: 10.1364/AO.57.001689
[27] T. S. Saini, U. K. Tiwari, and R. K. Sinha. Design and analysis of dispersion engineered rib waveguides for on-chip mid-infrared supercontinuum. J. Lightwave Technol. 36 (2018) 1993–1999.
Available: https://www.osapublishing.org/jlt/abstract.cfm?URI=jlt-36-10-1993
[28] T. S. Saini, U. K. Tiwari, and R. K. Sinha. Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: Design and analysis. J. Appl. Phys. 122(5) (2017) 053104.
Available: 10.1063/1.4997541
[29] X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther- Davies. Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide. Opt. Lett. 37 (2012) 3870–3872.
Available: https://doi.org/10.1364/OL.37.003870
[30] Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Y. Choi, S.Madden, and B. L. Davies. Mid-infrared supercontinuum generation in chalcogenide. Opt. Mat. Express 3(8) (2013) 1075 – 1086.
Available: https://doi.org/10.1364/OME.3.001075
[31] M. R. Karim, B. M. A. Rahman, and G. P. Agrawal. Mid-infrared superccontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide. Opt. Exp. 23(5) (2015) 6903 – 6914. Available: https://doi.org/10.1364/OE.23.006903
[32] J. W. Choi, Z. Han, B-Uk. Sohn, G. F. R. Chen, C. Smith, L.C.Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. H. Tan. Nonlinear
14 * Journal of Optoelectronical Nanostructures Autumn 2020 / Vol. 5, No. 4
characterization of GeSbS chalcogenide glass waveguides. Sci. Rep. 6 (2016) 39234 - 3923. Available: 10.1038/srep39234
[33] T. S. Saini, A. Kumar, and R. K. Sinha. Design and modeling of dispersion engineered rib waveguide for ultra-broadband mid-infrared supercontinuum generation. J. Mod. Opt. 64 (2017) 143–149.
Available: https://doi.org/10.1080/09500340.2016.1216190
[34] M.R. Alizadeh , M. Seifouri. Dispersion engineering of highly nonlinear rib waveguide for mid-infrared super continuum generation. Optik 140 (2017) 233–238. Available: https://doi.org/10.1016/j.ijleo.2017.04.056
[35] M. R. Karim, H. Ahmad, S. Ghosh, and B. M. A. Rahman. Design of dispersion-engineered As2Se3 channel waveguide for mid-infrared region supercontinuum generation. J. Appl. Phys. 123 (2018) 213101.
Available: https://doi.org/10.1063/1.5033494
[36] M.R. Alizadeh , M. Seifouri. Design and Analysis of a Dispersion-engineered and Highly Nonlinear Rib Waveguide for Generation of Broadband Supercontinuum Spectra. Frequenz 74 (3-4) (2019) 153–161.
Available: https://doi.org/10.1515/freq-2019-0098
[37] Zeli Li, Jinhui Yuan, Chao Mei, Feng Li, Xian Zhou, Binbin Yan, Qiang Wu, Kuiru Wang, Xinzhu Sang, Keping Long, AND Chongxiu Yu. Multi-octave mid-infrared supercontinuum and frequency comb generation in a suspended As2Se3 ridge waveguide. Applied Optics 58 (31) (2019) 8404-8410.
Available: 10.1364/AO.58.008404
[38] M.R. Karim, B.M.A. Rahman. Ultra-broadband mid-infrared supercontinuum generation using chalcogenide rib waveguide. Opt. Quant. Electron. 48 (2016) 174. Available: https://doi.org/10.1007/s11082-016-0458-5
[39] M. Yang, Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, G. Li, and L. Zhang. Mid-IR supercontinuum generated in low dispersion Ge-on-Si waveguides pumped by sub-ps pulses. Opt. Express 25 (2017) 16116–16122. Available: https://doi.org/10.1364/OE.25.016116
[40] Z. Zho, T. Brown. Full-vectorial finite-difference analysis of microstructure optical fibers. Opt. Express 10 (85) (2002) 53–64.
Available: https://doi.org/10.1364/OE.10.000853
[41] C. Ming, Y. Qing, L. Tiansong, C. Mingsong, H. Ning. New high negative dispersion photonic crystal fiber. New Optik 121 (2010) 867–871.
Available: https://doi.org/10.1016/j.ijleo.2008.09.039
Investigation of Highly Broadband Supercontinuum Generation in a Suspended As2Se3 * 15
[42] Tomasz Karpisz, Bartlomiej Salski, Anna Szumska, Mariusz Klimczak, Ryszard Buczynski. FDTD analysis of modal dispersive properties of nonlinearphotonic crystal fibers. Opt. Quant. Electron. 47 (2015) 99–106. Available: https://doi.org/10.1007/s11082-014-9987-y