Light management in Perovskite thin-film Solar Cells using multiple Gratings
Subject Areas : Journal of Optoelectronical Nanostructures
Seyed Mohsen Mohebbi Nodez
1
,
Masoud Jabbari
2
*
,
Ghahraman Solookinejad
3
1 - Department of Electrical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
2 - Department of Electrical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
3 - Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
Keywords: Thin-Film Solar Cells Perovskite, Graded Gratings, Absorption, Plasmonic, Scattering,
Abstract :
In this study, we developed a new method based on uniform and graded gratings on the back surface of perovskite ultrathin film solar cells to enhance light absorption. The proposed gratings were designed in two configurations including penetrating the active layer and placing on it. These structures increase absorption by scattering and diffracting light and enlarging the optical path of photons. Simulations based on the finite element method showed that graded gratings can significantly enhance the absorption in the visible and infrared regions. The maximum current density and efficiency obtained from dense gratings placed on the back surface of the active layer were 27.59 and 25.52% mA/cm2, conventional PSCs that suffer from reduced efficiency under angled light incidence, our cell with graded gratings maintains high light absorption even at angles up to 45 degrees.
[1] Efaz, E. T., Rhaman, M. M., Al Imam, S., Bashar, K. L., Kabir, F., Mourtaza, M. E., & Mozahid, A. F. (2021). A review of primary technologies of thin-film solar cells. Journal of Engineering Research Express.Available: https://doi:10.1088/2631-8695/ac2353.
[2] Lee, T. D., & Ebong, A. U. (2017). A review of thin film solar cell technologies and challenges.Journal of Energy Reviews.Available: https://doi: 10.1016/j.rser.2016.12.028.
[3] Andreani, L. C., Bozzola, A., Kowalczewski, P., Liscidini, M., & Redorici, L. (2019). Silicon solar cells: toward the efficiency limits.Journal of Advances in Physics. Available: https://doi:10.1080/23746149.2018.1548305.
[4] Correa-Baena, J. P., Saliba, M., Buonassisi, T., Grätzel, M., Abate, A., Tress, W., & Hagfeldt, A. (2017). Promises and challenges of Perovskite solar cells, Journal of Science. Available: https://doi:10.1126/science.aam6323.
[5] Park, N. G. (2015). Perovskite solar cells an emerging photovoltaic technology.JournalofMaterialstoday,Available:https://doi:10.1016/j.mattod.2014.07.007.
[6] Kumar, N. S., & Naidu, K. C. B. (2021). A review on Perovskite solar cells (PSCs), Journal of materials and applications,
Available: https://doi:10.1016/j.jmat.2021.04.002.
[7] Yoo, J. J., Seo, G., Chua, M. R., Park, T. G., Lu, Y., Rotermund, F., & Seo, J. (2021). Efficient Perovskite solar cells via improved carrier management. Journal of Nature, Available: https://doi:10.1038/s41586-021-03285-w.
[8] Bera, S., & Pradhan, N. (2020). Perovskite nanocrystal heterostructures: synthesis optical properties and applications, Journal of Energy Letters, Available: https://doi:10.1021/acsenergylett.0c01449.
[9] Asmontas, S., & Mujahid, M. (2023). Recent Progress in Perovskite Tandem Solar Cells. Journal of Nanomaterials,
Available: https://doi:10.3390/nano13121886.
[10] Mohammadi, M. H., Eskandari, M., & Fathi, D. (2021).Improving the efficiency of perovskite solar cells via embedding random plasmonic nanoparticles: Optical–electrical study on device architectures. Journal of Solar Energy. Available: https://doi.org/10.1016/j.solener.2021.04.038.
[11] Fu, N., Bao, Z. Y., Zhang, Y. L., Zhang, G., Ke, S., Lin, P., & Lei, D. Y. (2017). Panchromatic thin perovskite solar cells with broadband plasmonic absorption enhancement and efficient light scattering management by Au@ Ag core-shell nanocuboids. Journal of Nano Energy,
Available: https://doi:10.1016/j.nanoen.2017.10.024.
[12] Singh, C., & Kumar, S. H. (2018). Anti-reflection and light trapping in c-Si solar cells. Journal of Springer. Available: https://doi:10.1007/978-981-10-4771-8.
[13] Peter Amalathas, A., & Alkaisi, M. M. (2019). Nanostructures for light trapping in thin film solar cells. Journal of Micromachines.
Available: https://doi.org/10.3390/mi10090619.
[14] Morawiec, S., Mendes, M. J., Priolo, F., & Crupi, I. (2019). Plasmonic nanostructures for light trapping in thin-film solar cells. Journal of Materials Science in Semiconductor Processing.
Available: https://doi:10.1016/j.mssp.2018.04.035.
[15] Siavash Moakhar, R., Gholipour, S., Masudy‐Panah, S., Seza, A., Mehdikhani, A., Riahi‐Noori, N., ... & Saliba, M. (2020). Recent advances in plasmonic perovskite solar cells. Journal of Advanced science, 7(13).
Available: https://doi:10.1002/advs.201902448.
[16] Amendola, V., Pilot, R., Frasconi, M., Maragò, O. M., & Iatì, M. A. (2017). Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics Condensed Matter.
Available: https://doi:10.1088/1361-648X/aa60f3.
[17] Hong Zou, Bo Wang. (2023). Solar energy utilization with double-layer cascaded grating metamaterial. Journal of Sciencedirect.
Available: https://doi:10.1016/j.icheatmasstransfer.2023.107129.
[18] Ying Zhan, Huaiyuan Yin, Jiahao Wang, Chunzhen (2023). Enhanced performance of diurnal radiative cooling for solar cells based on a grating-textured PDMS photonic structure.Journal of Materials Today Communications. Available: https://doi:10.1016/j.mtcomm.2023.106117.
[19] Sirazul Haque, Miguel Alexandre, Manuel J. Mendes, Hugo Águas, Elvira Fortunato, Rodrigo Martins. (2020). Design of wave-optical structured substrates for ultra-thin perovskite solar cells. Journal of Applied Materials Today. Available: https://doi:10.1016/j.apmt.2020.100720.
[20] Vahedi, S., Eskandari, M., Barzinjy, A. A., Rostami, A., Dolatyari, M., & Rostami, G. (2022). Overcoming the temperature effect on a single junction and intermediate band solar cells using an optical filter and energy selective contacts. Journal of Optical and Quantum Electronics.
Available: https://doi:10.1007/s11082-022-03764-y.
[21] Hinman, S. S., McKeating, K. S., & Cheng, Q. (2018). Surface plasmon resonance material and interface design for universal accessibility. Journal of Analytical chemistry,
Available: https://doi:10.1021/acs.analchem.7b04251.
[22] Wang, D., Loo, J. F. C., Chen, J., Yam, Y., Chen, S. C., He, H., & Ho, H. P. (2019). Recent advances in surface plasmon resonance imaging sensors. Journal of Sensors, Available: https://doi:10.3390/s19061266.
[23] Bocková, M., Slabý, J., Špringer, T., & Homola, J. (2019). Advances in surface plasmon resonance imaging and microscopy and their biological applications. Journal of Annual Review.
Available: https://doi:10.1146/annurev-anchem-061318-115106.
[24] Chen, K., Wu, R., Zheng, H., Wang, H., Zhang, G., & Chen, S. (2019). Light-trapping schemes for silicon thin-film solar cells via super-quadratic subwavelength gratings. Journal of Applied Optics.
Available: https://doi:10.1364/AO.58.008702.
[25] Bonod, N., & Neauport, J. (2016). Diffraction gratings: from principles to applications in high-intensity lasers. Journal of Optics and Photonics, Available: https://doi: 10.1364/AOP.8.000156.
[26] Yue, L., Yan, B., Attridge, M., & Wang, Z. (2016). Light absorption in Perovskite solar cell: Fundamentals and plasmonic enhancement of infrared band absorption. Journal of Solar Energy.
Available: https://doi:10.1016/j.solener.2015.11.028.
[27] Tooghi, A., Fathi, D., & Eskandari, M. (2020). High-performance Perovskite solar cell using photonic–plasmonic nanostructure. Journal of Scientific Reports. Available: https://doi:10.1038/s41598-020-67741-9.
[28] Abdelraouf, O. A., Shaker, A., & Allam, N. K. (2018). Front dielectric and back plasmonic wire grating for efficient light trapping in perovskite solar cells. Journal of Optical Materials.
Available: https://doi:org/10.1016/j.optmat.2018.10.028.
[29] Mohebbi Nodez, S. M., Jabbari, M., & Solookinejad, G. (2023). Absorption enhancement of Perovskite Solar Cells using multiple Gratings. Journal of Physica Scripta. Available: https://doi:10.1088/1402-4896/ace2f6.
[30] Dobrowolski, J. A. (1997). Numerical methods for optical thin films. Journal of Optics and Photonics News. Available: https://doi:10.1364/AO.4.000937.
[31] Shayegannia, M., Montazeri, A. O., Dixon, K., Prinja, R., Kazemi-Zanjani, N., & Kherani, N. P. (2021). Adiabatic mode transformation in width-graded nano-gratings enabling multiwavelength light localization. Journal of Scientific Reports. Available: https://doi1:0.1038/s41598-020-79815-9.
[32] Palik, E. D. (Ed.). (1998),Handbook of optical constants of solids Available:https://api.pageplace.de/preview/DT0400.9780080523750_A23526768/preview-9780080523750_A23526768.pdf.
[33] Singh, J. K., Mandal, S. K., & Banerjee, G. (2021). Refractive index of different Perovskite materials. Journal of Materials Research.
Available: https://doi:0.1557/s43578-021-00257-8.
[34] R. Ren, R., Zhong, Z. (2018), Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector, Journal of Optics.
Available: https://doi:10.1016/j.optcom.2018.02.051.
[35] E.G. Loewen, E. Popov, Diffraction Gratings and Applications, Journal of CRC Press, Available: https://doi:10.1201/9781315214849.
[36] Hamid Heidarzadeh (2019), Incident light management in a thin silicon solar cell using a twodimensional grating according a Gaussian distribution. Journal of SolarEnergy.Available: https://doi:10.1016/j.solener.2019.07.09.
[37] S. Ullah, S. Ullah, J. Wang, S.-E. Yang, T. Xia, H. Guo, Y. Chen, Investigation of airstable Cs2SnI6 films prepared by the modified two-step process for lead-free perovskite solar cells Semicond. Journal of Sci.Technol, Available: https://doi: 10.1088/1361-6641/abbdef.
[38] Y. Zang, Q. Xin, J. Zhao, J. Lin, Effect of Active Layer Thickness on the Performance of Polymer Solar Cells Based on a Highly Efficient Donor Material of PTB7-Th, J. Journal of Physical Chemistry,
Available: https://doi:10.1021/acs.jpcc.8b03132.
[39] Mohammed.m,Hala J. El-Khozondar,Salah A.Nassar, Guillaume Zoppi, Yasser F. Nassar, Design and optimization of plasmonic nanoparticles-enhanced perovskite solar cells using the FDTD method, Journal of Solar energy.Available: https://doi:10.51646/jsesd.v13i1.170.
[40] S. In, D.R. Mason, H. Lee, M. Jung, C. Lee, N. Park, Enhanced Light Trapping and Power Conversion Efficiency in Ultrathin Plasmonic Organic SolarCells, Journal of ACSPhotonics,
Available: https://doi.org/10.1021/ph500268y.
[41] B. Cai, Y. Peng, Y.-B. Cheng, M. Gu, 4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells, Journal of Opt. Express, OE. 23(2015)A1700–A1706.Available: https://doi.org/10.1364/OE.23.0A1700.
[42] A. Jangjoy, S. Matloub, Optical simulation and design of high-absorption thin-film perovskite halide solar cells based on embedded quadrilateral cluster nanoparticles, Journal of Solar Energy.
Available: https://doi: 10.1016/j.solener.2022.07.004.
[43] Jiangang Feng, Xi Wang, Jia Li, Haoming Liang , Wen Wen3, Ezra Alvianto, Cheng-Wei Qiu , Rui Su & Yi Hou, Resonant perovskite solar cells with extended band edge. Journal of Nature Communications.
Available: https://doi:10.1038/s41467-023-41149-1.
[44] Raja W D, Bastiani M, Allen T G, Aydin E, Razzaq A, Rehman A U and De Wolf S 2021, Photon recycling in perovskite solar cells and its impact on device design. Journal of Nano Photonics.
Available: https://doi:10.1515/nanoph-2021-0067.
[45] Shima Pirhaghshenasvali; Rahim Ghayour; Mahsa Vaghefi, High-Performance Biosensor by using Au Nanoparticles and Grating for Sensing Waterborne Bacteria in Drinking Water.Journal of Optoelectronical Nanostructures.
Available: https://doi:10.30495/jopn.2024.32587.1303.
[46] Maryam Amirhoseiny; Majid Zandi; Ahad Kheiri, A Comparative Study of BSF Layers for InGaN Single-Junction and Multi-Junction Solar Cells. Journal of Optoelectronical Nanostructures.
Available: https://doi:10.30495/jopn.2024.31254.1273.
[47] Aliasghar Ayobi,Effects of effective layer thickness, light intensity and electron-hole pair separation distance on the performance of organic bulk hetero-junction solar cells. Journal of Optoelectronical Nanostructures. Available: https://doi:10.30495/jopn.2024.32692.1305.
[48] Mohammad Javad Karimi; Vahid Ashrafi-Dalkhani; Sajad Ghajarpour-Nobandegani; Mahnaz Mojab-abpardeh,Optical absorption in an array of quantum wires Effects of structural parameters and external fields.Journal of Optoelectronical Nanostructures.
Available: https://doi:10.30495/jopn.2024.33250.1315.
[49] Hoda Aleali; Ahmad Mehramiz; Elham Valizadeh,Host Liquid Effect on Thermo-Optical Pattern of a Self-Phase Modulated Laser Beam Passing Through Au Nanoparticles Colloids. Journal of Optoelectronical Nanostructures.
Available: https://doi:10.30495/jopn.2024.31805.1290.
[50] Maryam Heidary Orojloo, Masoud Jabbari, Ghahraman Solooki nejad, Foozieh Sohrab, Design and Modeling of Photonic Crystal Absorber by Using Gold and Graphene Films, Journal of Optoelectronical Nanostructures. Available: https://doi: 10.30495/JOPN.2022.28915.1235.