Implication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons
Subject Areas : Journal of Optoelectronical NanostructuresDelaram Karimi Moghadam 1 * , Ghahraman Solookinejad 2
1 - Department of physics, Malayer Branch, Islamic Azad University, Malayer, Iran
2 - Marvdasht Branch Islamic Azad University, Marvdasht, Iran
Keywords: Electron exchange-correlation, Quantum plasma, Electron plasma waves, Quantum hydrodynamic model, Korteweg de Vries equation,
Abstract :
We have studied the electron exchange-correlation effect on the
characteristics of the two-component unmagnetized dense quantum plasma with
streaming motion. For this purpose, we have used the quantum hydrodynamic model
(including the effects of a quantum statistical Fermi electron temperature) for studying
the propagation of an electrostatic electron plasma waves in such that plasma consisting
of quantum electrons and immobile ions. It is found that by regarding the latter effect, it
possible the excitation of two distinct modes. Some different cases such as:
unmagnetized, collisionless, classical cases and some formulas presented and discussed.
By using the reduced quantum hydrodynamic (QHD) model, the Korteweg de Vries
(KdV) equation incorporating the electron exchange-correlation effect is derived. It was
shown that the electron exchange-correlation phenomenon on the main quantities for both
rarefactive and compressive types of solitary-wave propagation can be important. In
particular, the arbitrary amplitude of electron solitary-wave experiences a spreading as
the effect of exchange-correlation becomes effective. Variations of the width of the
electron solitary wave for different plasma values were depicted. It was shown that by
increasing the exchange values, the width of soliton decrease.
[1] Z.A. Moldabekov, M. Bonitz, T. Ramazanov. Impact of single particle oscillations on screening of a test charge. Phys Plasmas. 25 (2018, Jun.) 031903.
[2] A. Abdikian. Modulational instability of ion-acoustic waves in magnetoplasma with pressure of relativistic electrons. Phys Plasmas. 24 (2017, May.) 052123.
[3] M. Ahmad, M. Farooq, A. Ullah. On a semiclassical model for damped dust ion-acoustic solitons with analysis of quantum electron exchange-correlation potential. Phys Plasmas. 27 (2020, Jan.) 023704.
[4] N. Sadiq, M. Ahmad. Kinetic Alfvén soliton structure with exchange-correlation potential in quantum plasma. Plasma Research Express. 2 (2020, Feb.) 015007.
[5] M. Sheng-Hong, X. Ju-Kui. Reduced and n-Type Doped TiO2: Nature of Ti3+ Species. Phys Scr. 84 (2011, Sep.) 20543–20552.
[6] A. Abdikian. The effects of exchange–correlation on high-frequency electrostatic surface wave in magnetized quantum plasma through a porous medium. Indian Journal of Physics. 91 (2017, Apr.) 1127–1133.
[7] S. Hussain, S. Mahmood. Chaos Soliton Fract. 106, 266 (2018, Jan.) 1-378.
[8] J. Goswami, S. Chandra, J. Sarkar, D. Bhattacharjee, D. Nandi, B. Ghosh. Energy Exchange Due to Resonant Interactions between the Fundamental and Higher Harmonic of Nonlinear Surface Waves in Quantum Plasma. Sustainable Humanosphere. 16 (1) (2020, Jan) 910-916.
[9] N. Rani, M. Yadav, Y. Mathur. Generation of Soliton, Cnoidal, and Periodic Waves During Pumping GaAs by an Electron Beam. Phys Lett A. 384 (2020, Apr.) 18-25.
[10] K. Jensen, D. Shiffler, J. Lebowitz, M. Cahay, J. Petillo. Analytic Wigner distribution function for tunneling and trajectory models. Appl Phys. 125 (2019, Feb.) 114303.
[11] A. Abdikian, Z. Ehsan. Propagation of electrostatic surface waves in a thin degenerate plasma film with electron exchange–correlation effects. Phys Lett A. 381(2017, Sep.) 2939-2943.
[12] F. Haas, L.G. Garcia, J. Goedert, G. Manfredi. Quantum ion-acoustic waves. Phys Plasmas. 10 (2003, July.) 3858.
68 * Journal of Optoelectronical Nanostructures Summer 2020 / Vol. 5, No. 3
[13] P.K. Shukla, B. Eliasson. Formation and Dynamics of Dark Solitons and Vortices in Quantum Electron Plasmas. Phys Rev Lett. 96 (2006, Jun.) 245001.
[14] M. Bagheri, A. Abdikian. Space-charge waves in magnetized and collisional quantum plasma columns confined in carbon nanotubes. Phys Plasmas. 21 (2014, Apr.) 042506.
[15] C.L. Gardner, C. Ringhofer. Smooth quantum potential for the hydrodynamic model. Phys Rev E. 53 (1996, Jan.) 157.
[16] S. Chandra, B. Ghosh. Modulational instability of electron-acoustic waves in relativistically degenerate quantum plasma. Astrophys Space Sci. 342 (2012, July.) 417–424.
[17] S. Khan, A. Mushtaq. Linear and nonlinear dust ion acoustic waves in ultracold quantum dusty plasmas. Phys Plasmas. 14 (2007, June.) 083703.
[18] B. Sahu, R. Roychoudhury. Cylindrical and spherical quantum ion acoustic waves. Phys Plasmas. 14 (2007, Nov.) 012304.
[19] K. Mebrouk, L.A. Gougam, M. Tribeche. Implication of the Electron Exchange-Correlation on Fully Nonlinear Quantum Dust Ion-Acoustic Solitons. Common Theo Phys. 65 (2016, Jun.) 73.
[20] A. Abdikian. Cylindrical fast magnetosonic solitary waves in quantum degenerate electron-positron-ion plasma. Phys Plasmas. 25 (2018, Feb.) 022308.
[21] B. Sahu, R. Roychoudhury. Electron acoustic solitons in a relativistic plasma with nonthermal electrons. Phys Plasmas. 13 (2006, May.) 072302.
[22] B. Ghosh, S. Chandra, S. Paul. Amplitude modulation of electron plasma waves in a quantum plasma. Phys Plasmas. 18 (2011, Dec.) 012106.
[23] F. Haas. A magnetohydrodynamic model for quantum plasmas. Phys Plasmas. 12 (2005, May.) 062117.
[24] F. Haas, G. Manfredi, M. Feix. Multistream model for quantum plasmas. Phys Rev E. 62 (2000, Aug.) 2763.
[25] G.A. Hoshoudy. Propagation of TM-surface waves on semi-bounded quantum plasma through porous medium. Indian J Phys. 90 (2016, Sep.) 477.
[26] S. Chandra, S.N. Paul, B. Ghosh. Linear and non-linear propagation of electron plasma waves in quantum plasma. Indian J Pure Appl Phys. 50 (2012, May.) 314.
Implication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons * 69
[27] H. Demiray, A. Abdikian. Modulational instability of acoustic waves in a dusty plasma with nonthermal electrons and trapped ions. Chaos Soliton Fact. 121 (2019, Apr.) 50-58.
[28]. A. Abdikian, Z. Safi. Finding Electrostatics modes in Metal Thin Films by using of Quantum Hydrodynamic Model. Jopn 1(3) (2016, Autumn.) 43-50.
[29]. A. Abdikian, GH. Solookinejad, Z. Safi. Electrostatics Modes in Mono-Layered Graphene. Jopn 1(2), (2016, Summer.) 1-8.
[30]. Kh. Zarei, GH. Solookinejad, M. Jabbari. Investigating the Properties of an Optical Waveguide Based on Photonic Crystal with Point Defect and Lattice Constant Perturbation. Jopn 1(1) (2016, Spring.) 65-80.
[31]. S. Fotoohi, S. Haji Nasiri. Vacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon. Jopn 4(4) (2019, Autumn.) 15-38.
[32]. A. Farmani, A. Mir, H. Emami nejad. Numerical Modeling of a Metamaterial Biosensor for Cancer Tissues Detection. Jopn 5(1) (2020, Winter.) 1-18.