Absorption Enhancement of Thin Film Solar Cell Utilizing a Graphene-Based Metasurface
Subject Areas : Journal of Optoelectronical NanostructuresAmir Mehrpanah 1 , Hassan Rasooli Saghai 2 * , Babak Sakkaki 3 , Ali Daghigh 4
1 - Department of Electrical Engineering, Shabestar Branch, Islamic Azad university, Shabestar, Iran
2 - Department of Electrical Engineering, Tabriz Branch, Islamic Azad university, Tabriz, Iran
3 - Department of Electrical Engineering, Miandoab Branch, Islamic Azad University, Miandoab, Iran
4 - Department of Electrical Engineering, Shabestar Branch, Islamic Azad university, Shabestar, Iran
Keywords: Graphene nanoribbon, Plasmonic effect, Refractory metal,
Abstract :
Thanks to the unique features of graphene, graphene-based metasurfaces have gained great attention in electronic applications. This manuscript introduces a graphene-based metasurface aiming absorption enhancement in thin film solar cells. We manipulate our design to induce the plasmonic effect in our metasurface. We optimize our metasurface with 2D-GNRs on the top of a SiO2 layer with a thickness of 60 nm. A thin film solar cell (TFSC) is designed based on Si utilizing 2D-GNRs/SiO2 nanostructure and its characteristics are compured with and without 2D GNRs utilizing the FDTD method. The optical short circuit current density increases from 10.66 mA/cm2 to 19.07 mA/cm2 and solar generation rate increases from to with 2D GNRs on the top of SiO2.The plasmonic resonance peaks are reported at the wavelength of 567 nm and 680 nm. To minimize the transmission from TFSC and based on the transmission profile and solar generation rate, we propose Al as a reasonable and suitable choice for the bottom electrode.
[1] Ali, A., A. Mitra, and B. Aïssa. Metamaterials and metasurfaces: A review from the perspectives of materials, mechanisms and advanced metadevices. Nanomaterials. [Online]. 12(6):1027(2022,Mar). available: https://doi.org/10.3390/nano12061027
[2] Lee, C.-W., H.J. Choi, and H. Jeong. Tunable metasurfaces for visible and SWIR applications. Nano Convergence. [Online]. 7(1):3 (2020,December). available: DOI:10.1186/s40580-019-0213-2.
[3] Ghajarpour-Nobandegani, S., M.J. Karimi, and H. Rahimi. Tunable Terahertz Absorber Based on Hexagonal Graphene Disk Array. Journal of Optoelectronical Nanostructures. [Online]. 8(2)( 2023,May). available: https://doi.org/10.30495/jopn.2023.31722.1286
[4] Zahra, S., L. Ma, W. Wang, J. Li, D. Chen, Y. Liu, Y. Zhou, N. Li, Y. Huang, and G. Wen. Electromagnetic metasurfaces and reconfigurable metasurfaces: a review. Frontiers in Physics. [Online]. 8(8)( 2021,January). available: https://doi.org/10.3389/fphy.2020.593411
[5] Zhao, X., Z. Sun, L. Zhang, Z. Wang, R. Xie, J. Zhao, R. You, and Z. You. Review on metasurfaces: an alternative approach to advanced devices and instruments. Advanced Devices & Instrumentation. [Online]. 13:1-19(2022). available:doi.org/10.34133/2022/9765089
[6] Joy, V., A. Dileep, P. Abhilash, R.U. Nair, and H. Singh. Metasurfaces for stealth applications: A comprehensive review. Journal of Electronic Materials. [Online]. 50(6) ( 2021,April). available: DOI:10.1007/s11664-021-08927-3.
[7] Bai, L., Y.K. Liu, L. Xu, Z. Zhang, Q. Wang, W.X. Jiang, C.-W. Qiu, and T.J. Cui. A Smart Metasurface for Electromagnetic Manipulation Based on Speech Recognition. Engineering. [Online]. 22: p. 185-190 (2023,March). available: https://doi.org/10.1016/j.eng.2022.06.026
[8] Servatkhah, M. and H. Alaei. The Effect of Antenna Movement and Material Properties on Electromagnetically Induced Transparency in a Two-Dimensional Metamaterials. Journal of Optoelectronical Nanostructures. [Online]. 1(2): p. 31-38. (2016,July). available: https://dorl.net/dor/20.1001.1.24237361.2016.1.2.3.2
[9] Liu, C., F. Yang, X. Fu, J. Wu, and L. Zhang. Programmable Manipulations of Terahertz Beams by Graphene-Based Metasurface With Both Amplitude and Phase Modulations. Frontiers in Materials. [Online].9: 932773(2022,june). available: https://doi.org/10.3389/fmats.2022.932773
[10] Akbari Eshkalak, M. and R. Faez. A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor. Journal of Optoelectronical Nanostructures. [Online]. 2(3): p. 1-12 (2017,Sep). available: https://dorl.net/dor/20.1001.1.24237361.2017.2.3.1.9
[11] Zhang, Y., Y. Feng, and J. Zhao. Graphene-enabled tunable phase gradient metasurface for broadband dispersion manipulation of terahertz wave. Micromachines. [Online]. 14(11): p. 2006 (2023,January). available: https://doi.org/10.3390/mi14112006
[12] Li, Y., M.R. Krisshnamurthi, W. Luo, A.K. Swan, X. Ling, and R. Paiella.Graphene metasurfaces for terahertz wavefront shaping and light emission. Optical Materials Express. [Online]. 12(12): p. 4528-4546 (2022). available: http://dx.doi.org/10.2139/ssrn.4533276
[13] Sarkhoush, M., H. Rasooli Saghai, and H. Soofi. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications. Frontiers of Optoelectronics. [Online]. 15(1): p. 42. (2022,October). available: https://doi.org/10.1007/s12200-022-00043-2
[14] Yager, T., G. Chikvaidze, Q. Wang, and Y. Fu.Graphene Hybrid Metasurfaces for Mid-Infrared Molecular Sensors. Nanomaterials. [Online].13(14): p. 2113. (2023,july). available: doi.org/10.3390/nano13142113
[15] Lerer, A., G. Kouzaev, and G. Makeeva. Electrodynamic and Probabilistic Calculation of Performances of THz devices Based on Periodic Mtilayer Graphene-Dielectric Structures. presented at 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT). IEEE. [Online]. (2020,March). available: doi.org/10.1109/MWENT47943.2020.9067449
[16] Parmar, J., S.K. Patel, and V. Katkar. Graphene-based metasurface solar absorber design with absorption prediction using machine learning. Scientific Reports. [Online].12(1): p. 2609(2022,Febraury). available: http://dx.doi.org/10.1038/s41598-022-06687-6
[17] Raad, S.H. and Z. Atlasbaf. Solar cell design using graphene-based hollow nano-pillars. Scientific Reports. [Online]. 11(1): p. 16169 (2021,August). available: https://www.nature.com/articles/s41598-021-95684-2
[18] Nagandla, P., P. Pokkunuri, and B. Madhav. Graphene metasurface based broad band absorber for terahertz sensing applications. Measurement: Sensors. [Online]. 30: p. 100927 (2023,December). available: http://dx.doi.org/10.1016/j.measen.2023.100927
[19] Sefidgar, Y., H. Rasooli Saghai, and H. Ghatei Khiabani Azar. Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP. Journal of Optoelectronical Nanostructures. [Online]. 4(2): p. 83-102(2019,jun). available: https://dorl.net/dor/20.1001.1.24237361.2019.4.2.7.7
[20] Parcham, E. and S.A. Miandoab. Introducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells. International Journal of Nano Dimension. [Online]. 11(1): p. 18-25.(2019,October). available: dorl.net/dor/20.1001.1.20088868.2020.11.1.3.1
[21] Jangjoy, A., H. Bahador, and H. Heidarzadeh. Design of an ultra-thin silicon solar cell using localized surface plasmonic effects of embedded paired nanoparticles. Optics Communications. [Online]. 450: p. 216-221(2019,November). available: https://doi.org/10.1016/j.optcom.2019.06.007
[22] Kanani, H., S. Golmohammadi, H.R. Saghai, and J. Pouladi. Design of Graphene-Coated Silver Nanoparticle Based on Numerical Solution to Enhance the Absorption of the Thin-Film Solar Cell. Plasmonics: [Online]. p. 1-9(2024,February). available: http://dx.doi.org/10.1007/s11468-024-02231-6
[23] Heidary Orojloo, M., M. Jabbari, G. Solookinejad, and F. Sohrabi Design and modeling of photonic crystal Absorber by using Gold and graphene films. Journal of Optoelectronical Nanostructures. [Online]. 7(2): p. 1-10(2022,May). available: https://doi.org/10.30495/jopn.2022.28915.1235
[24] Li, X., W. Yang, J. Deng, and Y. Lin. Surface plasmon resonance effects of silver nanoparticles in graphene-based dye-sensitized solar cells. Frontiers in Materials. [Online].10: p. 1137771(2023,May) available: doi:10.3389/fmats.2023.1137771
[25] Cao, S., T. Wang, Q. Sun, Y. Tang, B. Hu, U. Levy, and W. Yu.Graphene–silver hybrid metamaterial for tunable and high absorption at mid-infrared waveband. IEEE Photonics Technology Letters. [Online].30(5): p. 475-478(2018,March). available: https://doi.org/10.1109/LPT.2018.2800729
[26] Chorsi, H.T. and S.D. Gedney.Tunable plasmonic optoelectronic devices based on graphene metasurfaces. IEEE Photonics Technology Letters. [Online]. 29(2): p. 228-230(20167,January).available: http://dx.doi.org/10.1109/LPT.2016.263681
[27] Slizovskiy, S., A. Garcia-Ruiz, A.I. Berdyugin, N. Xin, T. Taniguchi, K. Watanabe, A.K. Geim, N.D. Drummond, and V.I. Fal’ko.Out-of-plane dielectric susceptibility of graphene in twistronic and Bernal bilayers. Nano Letters. [Online]. 21(15): p. 6678-6683(2021,August). availale: http://dx.doi.org/10.1021/acs.nanolett.1c02211
[28] Mehrpanah, A., H.R. Saghai, B. Sakkaki, and A. Daghigh. Design of Graphene-Based Core/Shell Nanoparticles to Enhance the Absorption of Thin Film Solar Cells. Plasmonics.[Online]. p. 1-7(2024,September). available: http://dx.doi.org/10.1007/s11468-024-02476-1
[29] Prokopeva, L.J., D. Wang, Z.A. Kudyshev, and A.V. Kildishev. Computationally efficient surface conductivity graphene model for active metadevices. IEEE Transactions on Antennas and Propagation. [Online].68(3): p. 1825-1835(2020, March). available: http://dx.doi.org/10.1109/TAP.2020.2967335
[30] Shi, Z., Y. Yang, L. Gan, and Z.-Y. Li. Broadband tunability of surface plasmon resonance in graphene-coating silica nanoparticles. Chinese Physics B. [Online].25(5): p. 057803(2016,April). available: http://dx.doi.org/10.1088/1674-1056/25/5/057803
[31] Liu, J.-X., Y.-J. Gao, W.-C. Tang, and H.-W. Yang. A research of drude-two-critical points model of graphene near the optical frequency. Superlattices and Microstructures. [Online]. 148: p. 106692(2020,December). available: http://dx.doi.org/10.1016/j.spmi.2020.106692
[32] Figueiredo, J.L., J.P. Bizarro, and H. Terças.Weyl–Wigner description of massless Dirac plasmas: ab initio quantum plasmonics for monolayer graphene. New Journal of Physics. [Online]. 24(2): p. 023026(2022, February).available: http://dx.doi.org/10.1088/1367-2630/ac5132
[33] Sindona, A., M. Pisarra, G. Falcone, C.V. Gomez, F. Mazzei, G. Cistaro, and S. Bellucci. Plasmon properties of doped or gated graphene nanoribbon arrays with armchair shaped edges. presented at IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE. [Online].(2017, September).available: http://dx.doi.org/10.1109/IMWS-AMP.2017.8247337
[34] Hossain, M.J., M.R.I. Faruque, and M.T. Islam. Correction: Perfect metamaterial absorber with high fractional bandwidth for solar energy harvesting. PLoS One. [Online]. 14(1): p. e0211751( 2018,November). available: http://dx.doi.org/10.1371/journal.pone.0211751
[35] Sikdar, D. and M. Premaratne. Electrically tunable directional spp propagation in gold-nanoparticle-assisted graphene nanoribbons. presented at 2014 IEEE Photonics Conference. IEEE. [Online].(2014,October). available: https://doi.org/10.1109/IPCon.2014.6995378
[36] Tharwat, M.M., A. Almalki, and A.M. Mahros. Plasmon-enhanced sunlight harvesting in thin-film solar cell by randomly distributed nanoparticle array. Materials. [Online].14(6): p. 1380(2021,March). available: http://dx.doi.org/10.3390/ma14061380
[37] Heidarzadeh, H., A. Jangjoy, and H. Bahador.Use of coupled Al-Ag bimetallic cylindrical nanoparticles to improve the photocurrent of a thin-film silicon solar cell. Plasmonics. [Online]. 17(3): p. 1323-1329(2022,March). available: http://dx.doi.org/10.1007/s11468-022-01630-x
[38] Selmy, A.E., M. Soliman, and N.K. Allam. Refractory plasmonics boost the performance of thin-film solar cells. Emergent Materials. [Online]. 1(10): p. 185-191(2018,November). available: http://dx.doi.org/10.1007/s42247-018-0017-x
[39] Katyani, R. and S. Andalibi Miandoab.Enhance efficiency in flat and nano roughness surface perovskite solar cells with the use of index near zero materials filter. Optical and Quantum Electronics. [Online]. 53(9): p. 520(2021,August). available: https://link.springer.com/article/10.1007%2Fs11082-021-03161-x