Effect of Annealing on Physical Properties of Cu2ZnSnS4 (CZTS) Thin Films for Solar Cell Applications
Subject Areas : Journal of Optoelectronical NanostructuresHeydar Izadneshan 1 * , Ghahraman Solookinejad 2
1 - Department of physics, Marvdasht Branch, Islamic Azad University,
Marvdasht, Iran.
2 - Department of physics, Marvdasht Branch, Islamic Azad University,
Marvdasht, Iran.
Keywords: Solar Cells, Optical Properties, CZTS, Magnetron Sputtering,
Abstract :
Cu2ZnSnS4 (CZTS) thin films were prepared by directly sputtering
Cu (In,Ga)Se2 quaternary target consisting of (Cu: 25%, Zn: 12.5%, Sn; 12.5%
and S: 50%). The composition and structure of CZTS layers have been
investigated after annealing at 200 0C, 350 0C and 500 0C under vacuum. The
results show that recrystallization of the CZTS thin film occurs and increasing
the grain size with a preferred orientation in the (112) direction was obtained. The
Raman spectra showed the existence of crystalline CZTS phase after annealing.
Optical transmission spectra were recorded within the range 300-900 nm. The
energy band gap (Eg) of the CZTS thin films was calculated before and after
annealing from the transmittance spectra using Beer-Lambert’s law. Results show
that Eg is dependent on the annealing temperature. The optical band gap of CZTS
also varied from 1.57 eV to 1.31 eV with increase in the annealing temperature
from 200 0C min to 500 0C.
[1] K. Ito and T. Nakazawa. Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jap J. App. Phys. 27 (1988) 2094– 2097.
[2] H. Katagiri. N. Sasaguchi. S. Hando. S. Hoshino. J. Ohashi, and T. Yokota. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of e-b evaporated precursors. Sol Energy Mater Sol. Cells. 49 (1997) 407–414.
[3] K. Diwatea. K. Mohiteb. M. Shindec. S. Rondiyaa. A. Pawbakea. Synthesis and characterization of chemical spray pyrolysed CZTS thin films for solar cell applications. Energy Procedia. 110 (2017) 180 – 187.
[4] N. Thota.·M. Gurubhaskar. A. C. Kasi. G. Hema Chandra. B. R. Mehta. A. Tiwari. Y. P. Venkata Subbaiah. Growth and properties of Cu2ZnSnS4 thin films prepared by multiple metallic layer stacks as a function of sulfurization time. J Mate Sci Mater Electron. 28 (2017) 11702–11711.
[5] N. Nakayama, and K. Ito. Sprayed films of stannite Cu2ZnSnS4. App. Surf. Sci. 92 (1996) 171–175.
[6] W. Shockley. and H. J. Queisser. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. App. Phys. 32 (1961) 510–519. [7] R. Chalapathy. G. Jung. B. Ahn. Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells Sol. Energy Mater Sol. Cells. 95 (2011) 3216–3221.
[8] A. Chirila. P. Reinhard. F. Pianezzi. P. Bloesch. A. R. Uhl. C. Fella. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 12 (2013) 1107–1111.
[9] A. Emrani. P. Vasekar. C. R. Westgate. Effects of sulfurization temperature on CZTS thin film solar cell performances. Sol. Energy. 98 (2013) 2855–2860.
[10] A. Fairbrother. X. Fontane. V. Izquierdo-Roca. M. Espíndola-Rodríguez. S. López- Marino and M. Placidi. On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks. Sol. Energy Mater Sol. Cells. 112 (2013) 97–105.
[11] J. Lee. H. Choi. W. Kim. Effect of pre-annealing on the phase formation and efficiency of CZTS solar cell prepared by sulfurization of Zn/(Cu,Sn) precursor with H2S gas. Sol. Energy. 136 (2016) 499–504.
[12] J. Leitao. N. M. Santos. P.A. Fernandes. Study of optical and structural properties of Cu 2 ZnSnS 4 thin films. Thin Solid Films. 519 (2011) 7390–7393.
[13] JCPDS 26-0575.
[14] A. Patterson. The Scherrer Formula for X-Ray Particle Size Determination. Phys Rev. 56 (1939) 978–982.
[15] Bragg, W.L. The Crystalline State: Volume I. New York, Macmillan Company, 1934, 123–135.
[16] M. Altosaar. J. Raudoja. K. Timmo. M. Danilson. M. Grossberg. J. Krustok. and E. Mellikov. Sulfur-containing Cu2ZnSnSe4 monograin powders for solar cells. Phys Stat Sol 205(a) (2008) 167–170.
[17] M. Xie. D. Zhuang. M. Zhao. B. Li. M. Cao. and J. Song. Fabrication of Cu2ZnSnS4 thin films using a ceramic quaternary target. Vacuum. 101 (2014) 146–150.
[18] H. Katagiri. K. Jimbo. S. Yamada. T. Kamimura. W. S. Maw. T. Fukano. Enhanced conversion efficiencies of. Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl Phys Exp. 1 (2008) 041201-041202.
[19] M.P. Suryawanshi. S. W. Shin. U. V. Ghorpade. K. V. Gurav. C. W. Hong. P. S. Patil. A. V. Moholkar and J. H. Kim. Improved solar cell performance of Cu2ZnSnS4 (CZTS) thin films prepared by sulfurizing stacked precursor thin films via SILAR method. J Alloys Compd. 671 (2016) 509-516.
[20] H. Park. Y. H. Hwang. and B. Bae. Sol-gel processed Cu2ZnSnS4 thin films for a photovoltaic absorber layer without sulfurization. J Sol-Gel Sci. Technol. 65 (2013) 23–27.
[21] W. Liu. B. Guo. C. Mak. A. Li. X. Wu. and F. Zhang. Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films. 535 (2013) 39–43.
[22] H. Miyazaki. M. Aono. H. Kishimura. K. Jimbo. H. Katagiri. Annealing behaviour of photoluminescence spectra on Cu2ZnSnS4 single crystals. Phys Status Solidi C. 14 (2017) 1-4.
[23] M.A. Olgar. J. Klaer. L. Ozyuzer, T. Unold. Cu2ZnSnS4-based thin films and sola