Analysis and Simulation of the Schottky Junction Using an Ensemble Monte Carlo Model
Subject Areas : Journal of Optoelectronical NanostructuresFatemeh Haddadan 1 , Mohammad Soroosh 2 * , Ramakrishnan Rajasekar 3
1 - Department of Electrical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 - Department of Electrical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 - Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Tiruchirappalli, India
Keywords: Electron Scattering, Monte Carlo Model, Schottky Junction, Thermionic Emission, Tunneling,
Abstract :
In this article, an ensemble Monte Carlo model is presented for the Al/n-GaAs Schottky junction using a two-valley regime. The non-parabolic energy bands and electron valleys are considered as Γ and L. Electron scattering mechanisms arising from impurities, optical phonons, and acoustic phonons are assumed, and mechanisms like thermionic emission and tunneling are considered for electron transit through the Schottky barrier. To evaluate the accuracy of the proposed model, the obtained results are compared with data from others. Furthermore, in addition to the potential and electric field distribution in the Schottky junction, the spatial distribution of electrons, energy distribution, velocity distribution, and contributions of various scattering mechanisms are also provided. This microscopic image is one of the prominent features of the proposed model that other numerical models like drift-diffusion and hydrodynamics are not capable of providing.
[1] A. S. Razeen, E. X. Tang, G. Yuan, J. Ong, K. Radhakrishnan, and S. Tripathy. Self-powered action in metal-semiconductor-metal ultraviolet photodetectors based on AlGaN/GaN high electron mobility transistor structures on different substrates. Optical Materials, 150 (2024) 115135. Available: https://doi.org/10.1016/j.optmat.2024.115135
[2] M. J. Maleki, M. Soroosh, G. Akbarizadeh, F. Parandin, and F. Haddadan. Photonic Crystal Resonators in Designing Optical Decoders. Journal of Optoelectronical Nanostructures, 8(4) (2023) 1-24. Available: https://doi.org/10.30495/JOPN.2023.32220.1296
[3] F. Pakrai, M. Soroosh, and J. Ganji. Designing of all-optical subtractor via PC-based resonators. Journal of Optoelectronical Nanostructures, 7(2) (2022) 21-36. Available: https://doi.org/ 10.30495/JOPN.2022.29545.1246
[4] M. Soroosh, A. Mirali, and E. Farshidi. Ultra-Fast All-Optical Half Subtractor Based on Photonic Crystal Ring Resonators. Journal of Optoelectronical Nanostructures, 5(1) (2020) 83-100. Available: https://jopn.marvdasht.iau.ir/article_4035.html
[5] S. M. H. Jalali, M. Soroosh, and Gholamreza Akbarizadeh. Ultra-fast 1-bit comparator using nonlinear photonic crystal based ring resonators. Journal of Optoelectronical Nanostructures, 4(3) (2019) 59-72. Available: https://jopn.marvdasht.iau.ir/article_3620.html
[6] E. Rafiee and F. Abolghasemi. An All-Optical NOR Gate based on Two-Dimensional Photonic Crystals. Journal of Optoelectronical Nanostructures, 8(1) (2023) 47-57. Available: https://doi.org/10.30495/JOPN.2023.31310.1275
[7] A. Kosarian. Complete Guide to Semiconductor Devices. 1st ed. Shahid Chamran University of Ahvaz press. 51-69, 2008 (in Persian). Available: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118014769
[8] F. Haddadan, M. Soroosh, and N. Alaei-Sheini, Designing an electro-optical encoder based on photonic crystals using the graphene-Al2O3 stacks. Appl. Opt. 59(7) (2020) 2179-2185. Available: https://doi.org/10.1364/AO.386248
[9] M. Soroosh, A. Farmani, M.J. Maleki, F. Haddadan, and M. Mansouri, Highly Efficient Graphene-Based Optical Components for Networking Applications. In Photonic Crystal and Its Applications for Next Generation Systems, Singapore: Springer Nature Singapore, 15-35, 2023. Available: https://doi.org/10.1007/978-981-99-2548-3_2
[10] S. Pal, S. Jana, R. Kamparath, S. Bhunia, N. Sharma, S. Karwal, A. Shaikh, and N. Benerji. PMMA as an Additive for Nanostructured TiO2 Thin Films for Heterojunction Visible-Blind Photodetectors. ACS Applied Nano Materials. 7(3) (2024) 3339–3351. Available: https://doi.org/10.1021/acsanm.3c05745
[11] F. Haddadan and M. Soroosh, Design and simulation of a subwavelength 4-to-2 graphene-based plasmonic priority encoder. Opt. Laser Technol. 157 (2023) 108680. Available: https://doi.org/10.1016/j.optlastec.2022.108680
[12] M. Li, W. Luo, X. Zhang, M. Zhu, G. Peng, Z. Zhu, and S. Qin. Control of Carrier Polarity and Schottky Barriers in Layered PdSe2 Field-Effect Transistors. Applied Electronic Materials. 5(6) (2023) 3394-3402. Available: https://doi.org/10.1021/acsaelm.3c00401
[13] F. Haddadan, M. Soroosh, and N. Alaei-Sheini, Cross-talk reduction in a graphene-based ultra-compact plasmonic encoder using an Au nano-ridge on a silicon substrate. Appl. Opt. 61(11) (2022) 3209-3217. Available: https://doi.org/10.1364/AO.449123
[14] J. Zhu, J. Ning, D. Wang, J. Zhang, L. Guo, Y. Hao. High-performance two-dimensional InSe field-effect transistors with novel sandwiched ohmic contact for sub-10 nm nodes: a theoretical study. Nanoscale Research Letters. 14 (2019) 1-8. Available: https://doi.org/10.1186/s11671-019-3106-8
[15] F. Bagheri, M. Soroosh, F. Haddadan, and Y. Seifi-Kavian, Design and simulation of a compact graphene-based plasmonic D flip-flop. Opt. Laser Technol. 155 (2022) 108436. Available: https://doi.org/10.1016/j.optlastec.2022.108436
[16] A. Mondal, C. Biswas, S. Park, W. Cha, S. H. Kang, M. Yoon, S. H. Choi, K. K. Kim, and Y. H. Lee. Low Ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer. Nature Nanotechnology. 19(1) (2024) 34-43. Available: https://doi.org/10.1038/s41565-023-01497-x
[17] M. J. Maleki, M. Soroosh, G. Akbarizadeh, F. Parandin, and F. Haddadan, Photonic crystal-based decoders: ideas and structures. Recent Advances and Trends in Photonic Crystal Technology: Intech Open 1-18 (2023). Available: https://doi.org/10.5772/intechopen.1002401
[18] B. Han, Y. Zhao, C. Ma, C. Wang, X. Tian, Y. Wang, W. Hu, and P. Samorì. Asymmetric Chemical Functionalization of Top‐Contact Electrodes: Tuning the Charge Injection for High‐Performance MoS2 Field‐Effect Transistors and Schottky Diodes. Advanced Materials. 34(12) (2022) 2109445. Available: https://doi.org/10.1002/adma.202109445
[19] F. Hadadan, and M. Soroosh, A new proposal for 4-to-2 optical encoder using nonlinear photonic crystal ring resonators. IJOP 13(2) (2019) 119-126. https://doi.org/10.29252/ijop.13.2.119
[20] A. Mahmoodpoor and S. Makarov. Numerical analysis of charge carriers injection in a light emitter or detector device based on a metal-semiconductor-metal structure. Photonics and Nanostructures-Fundamentals and Applications, 58 (2024) 101213. Available: https://doi.org/10.1016/j.photonics.2023.101213
[21] F. Haddadan, M. Soroosh, and M.J. Maleki, Presenting a two-valley Monte Carlo model for simulating and analyzing electron behavior in GaAs bulk and investigating the effects of electron transitions (Gunn Effect). 1st international and 7th national conference Congress on Electrical Engineering and Intelligent Systems. Iran. Najafabad (2024). Available: https://civilica.com/doc/1963406
[22] D. Shaikshavali and D. Kannadassan. Influence of surface trap states on RF/microwave performance of lateral AlGaN/GaN Schottky barrier diode. Journal of Electromagnetic Waves and Applications. 36(1) (2022) 29-47. Available: https://doi.org/10.1080/09205071.2021.1956374
[23] F. Haddadan, F. Bagheri, A. Basem, H.A. Kenjrawy, and M. Soroosh, Evanescent field engineering to reduce cross-talk in pattern-free suspended graphene-based plasmonic waveguides using nano-strips. International Journal for Light and Electron Optics 313 (2024) 171989. Available: https://doi.org/10.1016/j.ijleo.2024.171989
[24] G. Du, X. Liu, M. Liu, L. Sun, and R. Han. Characterizations of Double-gate SBTT Studying by a 2-D Full-Band Monte Carlo Device Simulator. The Fourth International Workshop on Junction Technology, Shanghai, China. (2004) 325-327. Available: https://ieeexplore.ieee.org/document/1306871
[25] H. Takeda, T. Ikezawa, M. Kawada, and M. Hane. Source/Drain Engineering for High-Performance Deep sub-100nm Ge-pMOSFETs Using Full-Band Monte Carlo Simulation. IEEE International Conference on Semiconductor Engineering. Kanagawa, Japan. (2008) 113-116. Available: https://ieeexplore.ieee.org/document/4648250
[26] F. Haddadan, and M. Soroosh, Low-power all-optical 8-to-3 encoder using photonic crystal-based waveguides. Photonic Network Communications 37 (2019) 83-89. Available: https://doi.org/10.1007/s11107-018-0795-3
[27] M. Ghodrati, A. Mir, and A. Farmani. Carbon nanotube field effect transistors–based gas sensors. In nanosensors for Smart Cities (2020) 171-183). Available: https://doi.org/10.1016/B978-0-12-819870-4.00036-0
[28] M. Khaleqi Qaleh Jooq, A. Mir, S. Mirzakuchaki, and A. Farmani. Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors. Physica E: Low-dimensional Systems and Nanostructures (2018) 104, 286-296. Available: https://doi.org/10.1016/j.physe.2018.08.008
[29] S. M. Sze and K. K. Ng. Physics of Semiconductor Devices. 4th ed. John Wiley & Sons, (2019) 134-181. Available: https://www.amazon.com/Physics-Semiconductor-Devices-Simon-Sze/dp/0471143235
[30] K. Tomizawa. Numerical Simulation of Submicron Semiconductor Device. 1st ed. Artech House, (1993) 38-69. Available: https://www.amazon.com/Numerical-Simulation-Submicron-Semiconductor-Materials/dp/0890066205
[31] C. Moglestue. Monte Carlo Simulation of Semiconductor Device. 1st ed. Chapman & Hall, (1993) 115-129. Available: https://link.springer.com/book/10.1007/978-94-015-8133-2
[32] D. Vasileska, S. M. Goodnick, and G. Klimeck. Computational Electronics Semi Classical and Quantum Device Modeling and Simulation. CRC Press, (2010) 241-332. Available: httpss://doi.org/10.1201/b13776