Classification of changes in the length of rainfall-dependent dry periods in Iran
Subject Areas : Climatology
1 - Assistant Professor, Department of Geography, Faculty of Literature and Humanities, Yasouj University, Iran
Keywords: Classification, Iran, Precipitation, Markov, Dry periods,
Abstract :
To study the behavior of dry period lengths, precipitation data were used on a daily scale for 45 synoptic stations in Iran (1985-2017). In order to spatially distribute the dry periods, sequences of 10, 20, 30 and more than 30 days were used and turned into zones. The results showed that the highest frequency of long-term dry periods (30 days and more), with 86 events is related to the south-eastern part of Iran and Iranshahr station. The lowest frequency with 3 cases belonged to Rasht station on the southwest coast of the Caspian Sea in northern Iran. The second-order Markov probability distribution was used to evaluate the type of dry period distribution, return continuity and their probability of occurrence. Probability matrix and return period for 10, 20 and 30 day continuities were calculated on a monthly scale and it was determined that June and April were the shortest dry period return periods (18 days) in the arid central and eastern regions of the country with the highest probability of occurrence ( 89%) and the longest return period is related to October and November in the wetlands of the north and northwest coast of the country (338 days) and the lowest probability of occurrence (28%).
1- جلالی، مسعود، کارگر، حلیمه، سلطانی، صغری (1390): بررسی احتمال وقوع روزهای بارانی در شهر ارومیه با استفاده از مدل زنجیره مارکوف. فصلنامه فضای جغرافیایی، دوره یازدهم، شماره 35، صص 257-235.
2- حجازی زاده، زهرا، شیرخانی، علیرضا (1382): تحلیل و پیشبینی آماری خشکسالی و دورههای خشک کوتاه مدت در استان خراسان، پژوهشهای جغرافیایی، جلد 1، شماره 37، صص 25-38.
3- طاووسی، تقی، خسروی، محمود، قادر زهی، خالد (1389): بررسی خشکسالی و تحلیل روند دورههای خشک کوتاهمدت ایرانشهر با استفاده از زنجیره مارکف در دوره آماری 1385-1359، نشریه علوم محیطی، دوره هفتم، شماره 4، صص 44-31.
4- عساکره، حسین (1387): بررسی احتمال تواتر و تداوم روزهای خشک در استان گلستان با استفاده از زنجیره مارکوف، مجله جغرافیا و توسعه، دوره 8، شماره 17، ص 44-29.
5 - علیجانی، بهلول، محمودی، پیمان، ریگی چاهی، اله بخش، خسـروی، پرویـز (1389: بررسـی تـداوم روزهـای یخبندان در ایران با استفاده از مدل زنجیره مارکوف. پژوهشهای جغرافیای طبیعی، شماره 73، صص 20-1.
6- فولادمند، حمیدرضا (1385): پیشبینی بارندگی روزانه و سالانه و تعداد روزهای بارانی در سال با استفاده از زنجیره مارکوف در یک منطقه نیمهخشک. مجله علوم کشاورزی دانشگاه آزاد اسلامی واحد علوم و تحقیقات، سال دوازدهم، شماره 1، صص 124-113.
7- محمودی، پیمان، پروین، نادر، جباری، رضا (1392): پهنهبندی ایران بر اساس طول دورههای خشک، مطالعات جغرافیایی مناطق خشک، دوره چهارم، شماره سیزدهم، صص 106-85.
8- مفیدی، عباس، زرین، آذر، کارخانه، میثم (1393): بررسی الگوی گردش جو در طول دورههای خشک و مرطوب در سواحل جنوبی دریای خزر، مجله ژئوفیزیک ایران، دوره هشتم، شماره یکم، صص 176-140.
9- هاشمی عنا، سید کرامت؛ خسروی، محمود؛ تقی طاووسی (1396): شبیهسازی طولانیترین طول دورههای خشک با رویکرد تغییر اقلیم در گستره ایران زمین، مجله مناطق خشک سبزوار، دوره 6، شماره 24، صص 33-18.
10- Alley, W.M., (1985): The Palmer Drought Severity Index As A Measure Of Hydrologic Drought 1. Jawra Journal Of The American Water Resources Association, 21(1): Pp. 105-114.
11- Azmi, M., Rüdiger, C., & Walker, J. P. (2016): A Data Fusion‐Based Drought Index. Water Resources Research, 52(3), Pp. 2222-2239.
12- Berger, A. And Goossens, C.H.R. (1983): ‘Persistence Of Wet And Dry Spells At Uccle (Belgium)’, J. Climatol., 21(3): Pp. 21–34.
13- Bhalme, H.N. And Mooley, D.A., (1980): Large-Scale Droughts/Floods And Monsoon Circulation. Monthly Weather Review, 108(8): Pp. 1197-1211.
14- Bhowmik, R. D., Suchetana, B., And Lu, M. (2019): Shower Effect Of A Rainfall Onset On The Heat Accumulated During A Preceding Dry Spell. Scientific Reports, 9(1), 1-10.
15- Buishand, T.A. (1978): ‘Some Remarks On The Use Of Daily Rainfall Models’, J. Hydrol., 36: Pp. 295–308.
16- Burguen˜o, A. (1981): ‘Diversos Aspectos Climatolo´ Gicos De La Lluvia En Barcelona’, Notes De Geografica Fı´Sica, Vol. 5, University Of Barcelona, 23(4): Pp. 3–16.
17- Ca´Rdenas, P.A. (1989): ‘Cadenas De Markov De O´Rdenes Superiores En La Modelizacio´N De Dı´As Consecutivos Con Precipitacio´ N’, Re6ista Cubana De Meteorologı´A, Vol. 2, La Habana: Pp. 12–17.
18- Cancelliere, A., And J. D. Salas. (2010): Drought Length Probabilities For Periodic-Stochastic Hydrologic Data. Water Resour. Res., 40(5): P. 50.
19- Caskey, J.E. (1963): ‘A Markov Chain Model For The Probability Of Precipitation Occurrence In Intervals Of Various Length’, Mon. Weather Re6, 101: Pp. 298–301.
20- Chin, E.H. (1977): ‘Modelling Daily Precipitation Occurrence Process With Markov Chain’, Water Res. Res., 13(7): Pp. 949–956.
21- Dahale, S. D., Panchawagh, N., Singh, S. V., Ranatunge, E. R. And Brikshavana. (1994): Persistence In Rainfall Occurrence Over Tropical South-East Asia And Equatorial Pacific. Theoretical And Applied Climatology, Volume 49 (1)1: P. 2739.
22- Domı´Nguez, J.I. (1973): Las Cadenas De Marko6, Su Aplicacio´N Al Clima De Ma´Laga. Posibilidades Turı´Sticas, University Of Ma´Laga, 34.
23- Douguedroit, A. (1987): ‘The Variations Of Dry Spells In Marseilles From 1865 To 1984’, J. Climatol., 7, Pp. 541–551.
24- Eriksson, B. (1965): ‘A Climatological Study Of Persistency And Probability Of Precipitation In Sweden’, Tellus, 4, Pp. 484–497.
25- Gabriel, K.R. And Neumann, J. (1962): ‘A Markov Chain Model For Daily Rainfall Occurrence At Tel-Aviv’, Q. J. R. Meteorol. Soc., 88, Pp. 90–95.
26- Go´Mez, L. (1997): Regionalizacio´N Clima´ Tica De La Espan˜a Peninsular Mediante El Ana´Lisis Marko6iano De Las Sequı´As, Doctoral Thesis: Un Published, University Of Barcelona, Spain, P. 73.
27- Grace Ra, Eagleson Ps. (1966): The Synthesis Of Shorttime-Increment Precipitation Sequences, Hydrodynamics Laboratory, Massachusetts Institute Of Technology, Cambridge, Usa (No. 91). Report, P. 56.
28- Haan, C.T. Et Al. (1976): ‘A Markov Chain Model Of Daily Rainfall’, Water Res. Res., 12, Pp. 443–449.
29- Nasab, A. H., Ansary, H., & Sanaei-Nejad, S. H. (2018): Analyzing Drought History Using Fuzzy Integrated Drought Index (Fidi): A Case Study In The Neyshabour Basin, Iran. Arabian Journal Of Geosciences, 11(14), Pp. 1-10.
30- Hernández-Díaz, L.; Laprise, R.; Sushama, L.; Martynov, A.; Winger, K.; Dugas, B. (2013): Climate Simulation Over Cordex Africa Domain Using The Fifth-Generation Canadian Regional Climate Model (Crcm5). Clim. Dyn., 40, Pp. 1415–1433.
31- Katz, R.W. (1977): ‘Precipitation As A Chain-Dependent Process’, J. Appl. Meteorol., 16, Pp. 671–676.
32- Kendon, E. J., Stratton, R. A., Tucker, S., Marsham, J. H., Berthou, S., Rowell, D. P., & Senior, C. A. (2019): Enhanced Future Changes In Wet And Dry Extremes Over Africa At Convection-Permitting Scale. Nature Communications, 10(1), Pp. 1-14.
33- Lo´Pez Mun˜ Oz, L. (1988): Grazalema (Ca´Diz). Un Claro Ejemplo De Precipitacio´N Orogra´ Fica, Instituto Nacional De Meteorologı´ A, Madrid, Pp. 16-20.
34- Martı´N-Vide, J. (1981): ‘Cantidades Diarias Y Ana´Lisis Markoviano De Las Precipitaciones En El Litoral Mediterra´Neo Sur De La Penı´Nsula Ibe´Rica’, Paralelo 37, Vol. 5, University College Of Almerı´A, Pp. 97–114.
35- Martı´N-Vide, J. (1994): ‘Geographical Factors In The Pluviometry Of Mediterranean Spain: Drought And Torrential Rainfall’, Us–Spain Workshop On Natural Hazards, The University Of Iowa, Pp. 9–25.
36- Martin-Vide, J. And Gomez, L. (1999): Regionalization Of Peninsular Spain Based On The Length Of Dry Spells. International Journal Of Climatology, Volume 19, Issue 5, Pp. 537-555.
37- Moon, S.E., Ryoo, S-B. And Kwon, J.G. (1994): ‘A Markov Chain Model For Daily Precipitation Occurrence In South Korea’, Int. J. Climatol., 14, Pp. 1009–1016.
38- Nobilis, F. (1986): ‘Dry Spells In The Alpine Country Austria’, J. Hydrol., 88, 235–251.
39- Palmer, W. C. (1985): Meteorological Drought. Research. Paper No. 45, U. S. Department Of Commerce Weather Bureau, Washington, D.C, Pp. 45-59.
40- Raso, J.M. (1982): ‘Probabilidades De Transicio´N Y Distribucio´N Estacionaria De Los Dı´As Con Y Sin Precipitacio´N En Palma De Mallorca Segu´N El Modelo De La Cadena De Markov Para Dos Estados’, Tarraco. Cuadernos De Geografı´A, University Of Barcelona, Tarragona, Pp. 195–209.
41- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.. (2004): The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, Pp. 381–394.
42- Selvaraj Rs, Selvis T. (2010): Stochastic Modelling Of Daily Precipitation At Aduthurai. International, Pp. 20-29.
43- Escalante-Sandoval, C., & Nunez-Garcia, P. (2017): Meteorological Drought Features In Northern And Northwestern Parts Of Mexico Under Different Climate Change Scenarios. Journal Of Arid Land, 9(1), Pp. 65-75.
44- Stern, R.D. (1982): ‘Computing A Probability Distribution For The Start Of The Rains From A Markov Chain Model For Precipitation’, J. Appl. Meteorol., 21, Pp. 420–423.
45- Todorovic, P. And Woolhiser, D.A. (1975): ‘A Stochastic Model Of N-Day Precipitation’, J. Appl. Meteorol., 14, Pp. 17–24.
46- Conesa, C. And Martı´N-Vide, J. (1993): ‘Analyse Para La Chaıˆne De Markov De La Se´Cheresse Dans Le Sudest De L’espagne’, Re6.Se´Cheresse, 2(4) Pp. 123–129.
47- Tichavský, R., Ballesteros-Cánovas, J. A., Šilhán, K., Tolasz, R., & Stoffel, M. (2019). Dry Spells And Extreme Precipitation Are The Main Trigger Of Landslides In Central Europe. Scientific Reports, 9(1), Pp. 1-10.
48- Yihdego, Y., Vaheddoost, B., & Al-Weshah, R. A. (2019): Drought Indices And Indicators Revisited. Arabian Journal Of Geosciences, 12(3), p. 69.
_||_