Assessing the risk of exposure to trihaloe methanes in rural drinking water
Subject Areas : ClimatologyAli Nasiri 1 , Nematolah Jafarzadeh Haghighi Fard 2 * , Abdolrahim Pazira 3 , Fazel Amiri 4
1 - PhD Student, Department of Environmental Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
2 - Visiting Professor, Department of Environmental Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
Professor, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3 - Associate Professor, Department of Environmental Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
4 - Associate Professor, Department of Environmental Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
Keywords: Distribution network, village, drinking water, Terry Halo Methane,
Abstract :
Trihalo-methanes have been identified by the Cancer Research Institute as a carcinogen for humans. Considering that in Haft Rousta project, the source of drinking water supply is groundwater and water of Darood Zan dam and disinfection used is chlorine, this study was conducted to determine the concentration of trihalomethanes in drinking water of Haft Rousta project. The present study was conducted in the spring and summer of 2017. For this purpose, three villages (Abbasabad, Majd Abad, Kemar Zard) from Marvdasht city of Fars with a total of 9 stations were selected and the amounts of chlorine, pH, temperature, total organic carbon and trihalo methane were measured with three replications in water samples. The average concentration of trihalomethane compounds in this study was estimated to be 39 mg / l for Abbasabad village, 38.6 mg / l for Kemar Zard village and 39.7 mg / l for Majd Abad village. The highest recorded concentration was calculated in Majd Abad village with a concentration of 73 mg / l. The mean concentrations of chloroform, bromoform, bromodium chloromethane and dichloromethane and totality of halo methanes in network water in spring 1996 were 22.25 7 7.98, 11.42 90 3.90, 7.43 7 2.72, 51, respectively. 5.95 2 2.2, 47.06 15 15.70 mg / l in summer 96 are equal to 14.69 4 4.11, 7.55 99 1.99, 4.93 51 1.51, 1.49 3.95 ،, 31.13 97 7.97 mg / l were calculated. Due to the concentration of trihalomethane in the drinking water of the study area, the possibility of trihalomethane compounds due to the consumption of the studied waters is very low and the presence of this pollutant in this danger does not affect consumers in any age group.
1- سجاد مظلومی، امیرحسین.، محوی، مهدی.، فضلزاده دویل، شاهرخ.، نظمآرا، مسلم.، مظلومی، رحمانی کوروش، شمسمحمود.، (1388): بررسی غلظت تریهالومتانها در آب شرب شهر تهران، دوازدهمین همایش ملی بهداشت محیط ایران، دانشگاه علوم پزشکی بهشتی، دانشکده بهداشت.
2- سادات حسینی، سمانه.، نبیبید هندی، غلامرضا.، پوستچی، حسین.، (1391): ارزیابی ریسک سرطان تریهالو متانهای آبآشامیدنی و مقایسه با آمار سرطان موجود در گنبد، کلاله و آق قلا، اولین همایش بینالمللی بحرانهای زیستمحیطی و راهکارهای بهبود آن، ایران جزیره کیش.
3- بابایی، علیاکبر.، عطاری، لیلا.، احمدیمقدم، مهدی.، علوی، سیدناد علی.، (1390): تعیین غلظت ترکیبات تریهالومتان در شبکه توزیع آب اهواز، فصلنامه علمی ـ پژوهشی جنتاشاپیر، دورۀ سوم، شمارۀ 4.
4- جعفری، محمدعلی.، تقوی، کامران.، حسنی، امیرحسام.، (1386): بررسی مقدار ترکیب سرطانزایی تریهالو متانها در آب آشامیدنی شهر لاهیجان و پیشنهاد کنترل پیشسازهای جانبی گندزدایی، مجله علوم پزشکی گیلان، دوره هفدهم شماره 68، صص :6-1.
5- Boorman,GA. (1999): Drinking Water Disinfection Byproducts: Review And Approach To Toxicity Evaluation,Environmental Health Perspectives, 107(Suppl 1): 207-17.
6- Bull,R. Bull,R. Krasner, S. Daniel, PA. (2001): Health Effects And Occurrence Of Disinfection By-Products, Ed: AWWA Research Foundation.
7- Villanueva, Kogevinas, M. Cordier, S.Templeton,MR. Vermeulen, R. Nuckols, JR. Nieuwenhuijsen, MJ. Levallois, P. (2014): Assessing Exposure And Health Consequences Of Chemicals In Drinking Water: Current State Of Knowledge And Research Needs, Environmental Health Perspectives, 122(3):213-21.
8- Richardson, S. (2005): New Disinfection By-Product Issues: Emerging Dbps And Alternative Routes Of Exposure, Global Nest J. 7(1): 43-60.
9- US EPA I. (2011): Integrated Risk Information System, Environmental Protection Agency Region I,United State Environmental Protection Agency, Washington, DC.
10- Singer,PC. (1993): Formation And Characterization Of Disinfection By-Products, Safety Of Water Disinfection: Balancing Chemical & Microbial Risks:201.
11- Lekkas,T. (1996): Environmental Engineering I: Management Of Water Resources, Univerity Of The Aegean, Department Of Environmental Studies, Mytilene, Greece.
12- Singer, PC. (1994): Control Of Disinfection By-Products In Drinking Water, Journal Of Environmental Engineering, 120(4):727-44.
13- Krasner,SW. Mcguire, MJ. Jacangelo, JG. Patania, NL. Reagan, KM. Aieta,EM. (1989): The Occurrence Of Disinfection By‐Products In US Drinking Water, Journal‐American Water Works Association, 81(8):41-53.
14- Williams, DT. Lebel, GL. (1997): Benoit FM, Disinfection By-Products In Canadian Drinking Water, Chemosphere, 34(2): 299-316.
15- Lebel, GL. Benoit, FM. Williams,DT. (1997): A One-Year Survey Of Halogenated Disinfection By-Products In The Distribution System Of Treatment Plants Using Three Different Disinfection Processes, Chemosphere, 34(11):2301-17.
16- Letterman,RD. (1999): Association AWW, Water Quality And Treatment, Ed.: Mcgraw-Hill.
17- Samadi,MT. Nasseri, S. Mesdaghinia,A. Alizadefard, MR. (2006): Comparative Study On THMS Removal Efficiencies From Drinking Water Through Nanofiltration And Air Stripping Packed-Column, Iranian Journal Of Water And Wastewater, 57:14-21.
18- Kutty, PM. Nomani, AA. Thankachan, T. Al-Rasheed, R. (1995): Editor^Editors, Studies On Thms Formation By Various Disinfectants In Seawater Desalination Plants, IDA Conference, Abu Dhabi, Held During, Citeseer.
19- Phillips,L. Moya,J. (2013): The Evolution Of EPA's Exposure Factors Handbook And Its Future As An Exposure Assessment Resource, Journal Of Exposure Science & Environmental Epidemiology, 23(1):13-21.
20- Us E. (2006): Environmental Protection Agency, National Primary Drinking Water Regulations: Stage 2 Disinfectants And Disinfection By-Products (DBP Rule), Federal Register: Washington, DC, 387-493.
21- Singer, P. Harrington, G. Editor^Editors. (1993): Coagulation Of DBP Precursors: Theoretical And Practical Considerations. Proc, Water Quality Technol, Conf, American Water Works Assoc, Denver, Colo.
22- Sandrucci, P. Merlo, G. Genon,G. Meucci, L. (1995): PAC Activity Vs By-Product Precursors In Water Disinfection, Water Research, 29(10): 2299-308.
23- Laîné, JM. Jacangelo,JG.Cummings, EW. Carns, KE.Mallevialle, J. (1993): Influence Of Bromide On Low‐Pressure Membrane Filtration For Controlling Dbps In Surface Waters. Journal‐American Water Works Association, 85(6): 87-99.
24- Premazzi,G. Cardoso,C. Conio, O.Palumbo, F. Ziglio, G. Meucci,L. Borgioli,A. (1997): Standards And Strategies In The European Union To Control Trihalomethanes In Drinking Water, Environment Institute, European Commission Joint Research Centre And Techware, Italy.
25- Kim, H-C. Yu, M-J. (2005): Characterization Of Natural Organic Matter In Conventional Water Treatment Processes For Selection Of Treatment Processes Focused On Dbps Control, Water Research, 39(19): 4779-89.
26- Cowman, GA. (1995): Singer PC, Effect Of Bromide Ion On Haloacetic Acid Speciation Resulting From Chlorination And Chloramination Of Aquatic Humic Substances, Environmental Science & Technology, 30(1):16-24.
27- Wolfe, RL. (1990): Ultraviolet Disinfection Of Potable Water, Environmental Science & Technology, 24(6):768-73.
28- Richardson, SD. Thruston, AD.Collette, TW. Patterson, KS. Lykins, BW. Ireland, JC. (1996): Identification Of Tio2/UV Disinfection Byproducts In Drinking Water, Environmental Science & Technology, 30(11):3327-34.
29- Jack, BK. (2003): Global Cooperation For Local Implementation, Achieving International Sustainable Development Commitments.
30- Lee, S. Guo, H. Lam, S. Lau, S. (2004): Multipathway Risk Assessment On Disinfection By-Products Of Drinking Water In Hong Kong, Environmental Research, 94(1):47-56.
31- Chowdhury,S. Champagne,P. Husain, T. (2007): Fuzzy Risk-Based Decision-Making Approach For Selection Of Drinking Water Disinfectants, Journal Of Water Supply: Research And Technology—AQUA, 56(2):75-93.
32- Pardakhti, AR. Bidhendi, GRN. Torabian,A. Karbassi, A. Yunesian, M. (2011): Comparative Cancer Risk Assessment Of Thms In Drinking Water From Well Water Sources And Surface Water Sources, Environmental Monitoring And Assessment, 179(1-4): 499-507.
33- Golfinopoulos, S. Kostopoulou, M. Lekkas,T. Editors. (1993): Detection Of Thms In The Athens Water Supply. Proceedings 3rd Conference On Environmental Science And Technology, Vol. B.
34- Golfinopoulos,S. Kostopoulou, M. Lekkas, T. Editors. (1996): Seasonal Variation In Trihalomethanes Level In The Water Supply System Of Athens. 6th International Conference On Environmental Contamination, Delphi, Greece.
35- Mazloomi, S. Nabizadeh, R. Nasseri,S. Naddafi, K. Nazmara, S. Mahvi, A. (2009): Efficiency Of Domestic Reverse Osmosis In Removal Of Trihalomethanes From Drinking Water. Journal Of Environmental Health Science & Engineering, 6(4), 301-6.
36- Lebel, GL. Benoit, FM. Williams, DT. (1993): A One-Year Survey Of Halogenated Disinfection By-Products In The Distribution System Of Treatment Plants Using Three Different Disinfection Processes. Chemosphere, 34(11), 2301-17.
37- Hamidin, N. Qiming, J. And Des, W. (2008): Connell. "Human Health Risk Assessment Of Chlorinated Disinfection By-Products In Drinking Water Using A Probabilistic Approach." Water Research 42.13: 3263-3274.
38- Pavón, JLP. Martín, SH. Pinto,CG. Cordero, BM. (2008): Determination Of Trihalomethanes In Water Samples: A Review. Analytica Chimica Acta, 629(1-2),6-23.
39- Bland, JM. Altman,DG. (1995): Comparing Methods Of Measurement: Why Plotting Difference Against Standard Method Is Misleading, The Lancet, 346(8982):1085-87.
_||_