Analysis of evidence of climate change in southern coast of the Caspian Sea
Subject Areas :
Climatology
Alireza Sadeghinia
1
,
Mahdi Sedaghat
2
,
Somayeh Rafati
3
1 - Assistant Professor, Department of Humanities and Social Sciences, Farhangian University, Tehran, Iran
2 - Assistant Professor in Climatology, Department of Geography, Payame Noor University, Iran
3 - Assistant Professor of Climatology, Seyyed Jamal Al Din Asadabadi University, Asadabad. Iran
Received: 2021-09-24
Accepted : 2022-03-09
Published : 2022-03-21
Keywords:
Climate Change,
the extreme climatic indices,
the southern coast of the Caspian Sea,
Abstract :
In this study, in order to identify the most important evidence of climate change in the southern coast of the Caspian Sea, temperature and precipitation changes were studied using 20 indices during 1968-2017. The results showed that the intensity of precipitation significantly increased, but the number of days with precipitation significantly decreased. Despite the increase in rainfall intensity, the total annual rainfall has decreased, because of the number of rainy days and length of wet periods significantly decreased. Seasonally, spring rainfall decreased and summer rainfall increased. All the extreme temperature indices showed significant trends. On average, the increasing trends of the minimum annual temperatures and maximum annual temperature were 0.51 ° C and 0.31 ° C in per decade, respectively. The frequency of hot days and hot nights significantly increase with an increase rate of 1.5% and 2.7% per decade, respectively. Also, the frequency of cold days and cold nights significantly fell with a decrease rate of 1.1% and 1.3% per decades, respectively. In general, the heating trend of the nights was stronger than during the days. The warm spell duration index showed a clear increase, with a rate of 2.6 d per decade. Comparison of the results of this study with the findings of global studies showed that the increasing trend of temperature in the southern Caspian coast is in line with the trends observed in global studies, but the decreasing trend of precipitation in the Caspian region is opposite to the increasing trend of global precipitation.
References:
توانگر، شهلا، مرادی، حمیدرضا، مساح بوانی، علیرضا، و محمود آذری (1395): پیشبینی اثر تغییر اقلیم بر عامل فرسایندگی باران در سواحل جنوبی دریای خزر، نشریه علمی پژوهشی مهندسی و مدیریت آبخیز، 8 (4): صص 414-424.
جعفر زاده، فاطمه، خورشید دوست، علیمحمد، ساری صراف، بهروز و باقر قرمز چشمه (1397): مدلسازی تغییرات آتی بارشهای سواحل جنوبی دریای خزر تحت شرایط تغییر اقلیم. فصلنامه تحقیقات جغرافیایی. 130: صص 3-20.
صابری لویه، فردین، علیجانی، بهلول و شهریار خالدی (1398): برآورد تغییرات آب و هوایی آینده سواحل جنوبی دریای خزر با استفاده از مدل آب و هوایی منطقهای. نشریه تحلیل فضایی مخاطرات محیطی، 1: صص 111-138.
عزیزی، قاسم و محمود روشنی (1387): مطالعه تغییر اقلیم در سواحل جنوبی دریای خزر به روش منکندال. پژوهشهای جغرافیایی. 64: صص 28-13.
کریمی، مصطفی، فاطمه ستوده و سمیه رفعتی (1397). تحلیل روند تغییرات و پیشبینی پارامترهای حدی دمای سواحل جنوبی دریای خزر. نشریه تحقیقات کاربردی علوم جغرافیایی، 48: صص 79-93.
رفعتی، سمیه و مصطفی کریمی (1397). بررسی همگنی دادههای اقلیمی و روند تغییر دما. مجله فیزیک زمین و فضا، 44(1): 199-214.
Alexander, L.V., Zhang, X., Peterson, T.C., Et Al. (2006): Global Observed Changes In Daily Climate Extremes Of Temperature And Precipitation. J. Geophys. Res. 111 (D05109).
Allen, M.R. (2018): Framing And Context "In Global Warming Of 1.5 C: An IPCC Special Report On The Impacts Of Global Warming Of 1.5 C Above Pre-Industrial Levels And Related Global Greenhouse Gas Emission Pathways, In The Context Of Strengthening The Global Response To The Threat Of Climate Change, Sustainable Development, And Efforts To Eradicate Poverty.
Christidis, N., Stott, P.A. (2020): The Extremely Cold Start Of The Spring Of 2018 In The United Kingdom. Bull. Am. Meteorol. Soc. 101 (1): Pp. S23-S28
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gostkowski, W.J., Et Al. (2013):Chapter 12 - Long-Term Climate Change: Projections, Commitments And Irreversibility.In: Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution To AR5. Eds. IPCC, Cambridge: Cambridge University Press.
Darand, M. (2020): Future Changes In Temperature Extremes In Climate Variability Over Iran. Meteorol Appl. 27: Pp. 1-16.
Ding, T., Qian, W., Yan, Z. (2010): Changes In Hot Days And Heat Waves In China During 1961- 2007. Int. J. Climatol. 30 (10): Pp. 1452- 1462.
Donat, M.G., Alexander, L.V., Yang, H., Et Al., (2013a): Updated Analyses Of Temperature And Precipitation Extreme Indices Since The Beginning Of The Twentieth Century: The Hadex2 Dataset. J. geophysics. Res.: Atmosphere 118: Pp. 2098e2118.
Donat, M.G., Alexander, L.V., Yang, H., Et Al., (2013b): Global Land-Based Datasets For Monitoring Climatic Extremes. Bull. Am. Motorola. Soc. 94: Pp. 997e1006.
Donat, M.G., Lowry, A.L., Alexander, L.V., O’Gorman, P.A., Maher, N. (2016). More Extreme Precipitation In The World’s Dry And Wet Regions. Nat. Clim. Change 6 (5): Pp. 508–513.
Dong, S., Sun, Y. And C. Li. (2020): Detection Of Human Influence On Precipitation Extremes In Asia. J. Climate, 33: Pp. 5293–5304.
Dong, S., Sun, Y., Li, C., Zhang, X Min, S-K. And Kim Y-H. (2021): Attribution Of Extreme Precipitation With Updated Observations And CMIP6 Simulations. Journal Of Climate, 34: Pp. 871-881.
Evans, J. P., (2009): 21st Century Climate Change In The Middle East. Climatic Change 92(3): Pp. 417- 432.
Fischer, E. M., Beyerle, U., Schleussner, C. F., King, A. D., & Knutti, R. (2018): Biased Estimates Of Changes In Climate Extremes From Prescribed SST Simulations. Geophysical Research Letters, 45: Pp. 8500–8509.
Hansen, J., Sato, M., Ruedy, R., Lo, K., And Lea, D.W. (2006): Global Temperature Change. Proc. Natl. Acad. Sci. USA, 103: Pp. 14288–14293.
He, J. & Soden, B. J. (2017): A Re-Examination Of The Projected Subtropical Precipitation Decline. Nature Climate Change, 7: Pp. 53-57.
Kendon, M., Mccarthy, M., Jevrejeva, S., Matthews, A., And Legg, T. (2019): State Of The UK Climate 2018. International Journal Of Climatology, 39 (Suppl. 1): Pp. 1–55.
Kim, Y.; Rocheta, E.; Evans, J.P.; Sharma, A. (2020): Impact Of Bias Correction Of Regional Climate Model Boundary Conditions On The Simulation Of Precipitation Extremes. Clim. Dyn. 55, Pp. 3507–3526.
Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., Chakraborty, S., (2020): Assessment Of Climate Change Over The Indian Region: A Report Of The Ministry Of Earth Sciences. (Moes), Government Of India.
Kumar, S., Merwade, V., Kam, J. And Thurner, K. (2009): Stream Flow Trends In Indiana: Effects Of Long Term Persistence, Precipitation And Subsurface Drains. Journal Of Hydrology, 374: Pp. 171-183.
Mansouri Daneshvar, M.R., Ebrahimi, M., And Nejadsoleymani, H. (2019): An Overview Of Climate Change In Iran: Facts And Statistics. Environ Syst Res, 8 (7):1-10.
Mofidi A, Zarrin A, Kharkhaneh M (2008): Determination Of The Pattern Of Severe Winter Precipitation And Its Comparison With The Pattern Of Heavy Precipitation In The Southern Coast Of The Caspian Sea. The 1st International Conference On The Caspian Region Environmental Changes, Mazandaran University, Babolsar
Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Ø., Marelle, L., Samset, B. H., Sillmann, J., Schaller, N., Fischer, E., Schulz, M., And Stohl, A. (2019): Frequency Of Extreme Precipitation Increases Extensively With Event Rareness Under Global Warming. Scientific Reports, 9: Pp. 16063.
Nicholls, N., And Murray, W. (1999): Climatic Change. Springer Science And Business Media LLC. 42 (1): Pp. 23-29.
Pradhan, R.K.; Sharma, D.; Panda, S.; Dubey, S.K.; Sharma, A. (2019): Changes Of Precipitation Regime And Its Indices Over Rajasthan State Of India: Impact Of Climate Change Scenarios Experiments. Clim. Dyn. 52, Pp. 3405–3420.
Scheff, J. & Frierson, D. (2011): Twenty-First-Century Multimodel Subtropical Precipitation Declines Are Mostly Midlatitude Shifts, Journal Of Climate, 25: Pp. 4330-4347.
Serrano, A., V.L., Mateos, And J.A. Garcia. (1999): Trend Analysis Of Monthly Precipitation Over The Iberian Peninsula For The Period 1921-1995. Physics And Chemistry Of The Earth, Part B: Hydrology, Oceans And Atmosphere. 24(1-2): Pp. 85-90.
Sharma, A.; Sharma, D.; Panda, S.; Dubey, S.K.; Pradhan, R.K. (2018): Investigation Of Temperature And Its Indices Under Climate Change Scenarios Over Different Regions Of Rajasthan State In India. Glob. Planet. Chang. 161, Pp. 82–96.
Sieck, K., Nami, C., Bouweri, L.M., Richard, D And Jacob, D. (2020): Weather Extremes Over Europe Under 1.5°C And 2.0°C Global Warming From HAPPI Regional Climate Ensemble Simulations. Earth System Daynamics, 4: Pp. 1-17.
Stephenson, A., Vargo, J., Seville, Erica. (2010): Measuring And Comparing Organizational Resilience In Auckland. Australian Journal Of Emergency Management 25 (2): Pp. 27.
Sun, Q., Zhang, X., Zwiers, F., Westra, S., And Alexander L. V. (2021): A Global, Continental, And Regional Analysis Of Changes In Extreme Precipitation. J. Climate, 34: Pp.243–258.
Tabari, H., Mondoza Paz. S., Buekenhout, D., Willems, P. (2021): Comparison Of Statistical Downscaling Methods For Climate Change Impact Analysis On Precipitation-Driven Drought. Earth Syst. Sci., 25: Pp. 3493–3517.
Trenberth, K. E. & Dai, A. (2007): Effects Of Mount Pinatubo Volcanic Eruption On The Hydrological Cycle As An Analog Of Geoengineering. Geophys Res Lett 34:L15702.
Trenberth, K. (2011): Changes In Precipitation With Climate Change, Climate Research, Vol. 47: Pp. 123–138.
Tuel, A. & Eltahir, E. A. B. (2020): Why Is The Mediterranean A Climate Change Hot Spot? Journal Of Climate, 33: Pp. 5829-5843.
Vinod, T. (2017): Climate Change And Natural Disasters: Transforming Economies And Policies For A Sustainable Future. Routledge, London. ISBN 978-1-138-56735-1.
Wang, X.; L. (2008): Accounting For Autocorrelation In Detecting Mean-Shifts In Climate Data Series Using The Penalized Maximal T Or F Test. J. Appl. Meteor. Climatol. 47: Pp. 2423-2444.
Wang, X. L., Wen, Q. H., And Wu, Y. (2007): Penalized Maximal T Test For Detecting Undocumented Mean Change In Climate Data Series. J. Appl. Meteor. Climatol. 46 (6): Pp. 916-931.
Wang, X. L. (2003): Comments On Detection Of Undocumented Change Points: A Revision Of The Two-Phase Regression Model. J. Climate, 16. Pp. 3383-3385.
Yaduvanshi, A., Nkemelang, T., Bendapudi, R And Mark New. (2021): Temperature And Rainfall Extremes Change Under Current And Future Global Warming Levels Across Indian Climate Zones. Weather And Climate Extremes, 31: Pp. 100291.
Yin, H And Sun, Y. (2018): Characteristics Of Extreme Temperature And Precipitation In China In 2017 Based On ETCCDI Indices. Advances In Climate Change Research, 9: Pp. 218e226.
Yin, H., Donat, M. G., Alexander, L.V., Et Al., (2015): Multi-Dataset Comparison Of Gridded Observed Temperature And Precipitation Extremes Over China. Int. J. Climatol. 35: Pp. 2809e2827.
Yu, L., Zhong, S., Pei, L., Bian, X And Warren, E. (2016): Contribution Of Large-Scale Circulation Anomalies To Changes In Extreme Precipitation Frequency In The United States. Environ. Res. Lett. 11: Pp. 044003
Zeder, J And Fischer, M., (2020): Observed Extreme Precipitation Trends And Scaling In Central Europe. Weather And Climate Extremes, 29: Pp. 100266.
Zhai, P.M. Sun, A.J. Ren, F.M. Et Al., (1999): Chances Of Climate Extremes In China. Climatic Change 42: Pp. 203e218.
Zhou, Y., Ren, G. (2011): Change In Extreme Temperature Event Frequency Over Mainland China, 1961 - 2008. Clim. Res. 50 (2-3): Pp. 125-139.
Https://Unfccc.Int/Process-And-Meetings/The-Paris-Agreement/The-Paris-Agreement
_||_