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Abstract 

A CSS
1
†is a system with the continues-state components. When a component has the ability 

to obtain all the situations from completely working to completely failed, it named continues-

state component. In the real world, performance rate of elements are continuous and decrease 

by time. Continuity of components causes infinite working states and grows up the system 

states. In this paper we propose a new method for series-parallel continues-state RAP
2
‡using 

UGF
3
§for multi-state systems. In this method at first we consider a binary CFR

4
**system. 

Using Weibull distribution function for the performance rate of working state, this system 

upgraded to a CSC. Then the UGF for a series-parallel system has been studied and a 

numerical example presented to illustrate the reliability and availability computation.  
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1- introduction 

Considering the communications between 

various fields of science and the science 

development, increasing the performance 

and efficiency and decreasing the costs of 

the systems are noticed more than ever. To 

achieves to a more reliable and efficient 

system, the reliability problems have more 

application. For drawing near these 

problems to the real world, different 

methods and techniques have been used. 

The improvement of these methods causes 

the more realistic and more precise 

solutions. 

Now a day, many operational techniques 

have been designed for doing the different 

tasks in different environment. One of 

these techniques is categorizing based on 

performance states.  Reliability systems 

divided in two main categories: binary 

states and multi-states. In traditional 

reliability theory, it assumed that the 

system and its components only have two 

states: working and failed. In fact, most of 

the applied systems have more than two 

states. They can have the numerous states 

between working state and failed one. 

These systems are known as MSS
1

6  [22]. 

Basic concepts of MSS can be found in [1, 

17 and 18]. A brief study of reliability 

                                                   
6   1. Multi State Systems 

theory of MSS and its applications is in 

[15]. Ushakov [20] presented the UGF 

method for increasing the computation 

complexity of large scale MSS. Theory 

expansion and applications of UGF are 

presented in [8, 15, 19 and 21] and more 

detail description is on [11] which present 

the latest results on UGF. Output 

operational distribution function of a MSS 

can be determined using UGF. Also by 

combination of different operators, 

performance distribution of MSS with 

series, parallel, series-parallel and bridge 

structure have been studied on [12, 13 and 

16]. UGF is a rapid method for 

determining the reliability of a MSS 

system, so it is an appropriate technique 

for multi-state optimization models. 

Levitin and Lisnianski [13], presented a 

optimization algorithm for MSS using 

UGF with series-parallel systems. Levitin 

[10], works on optimal location of multi-

state components on a graph. Kuo and 

Wan [9], summarized the optimal location 

problems for increasing the reliability. 

UGF is the basic technique for evaluating 

the reliability of MSS in this study.  

Each component in MSS basically has two 

futures: performance rate and its 

probability and both of them are 

deterministic. Calculation and prediction 

of these performance rate and probability 
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is very difficult [7]. The reasons of these 

difficulties are the simplification 

assumptions and invalidity of the data. By 

using simplification assumptions, the 

performance states of components 

decreases and it prevents the system states 

from increasing. This approach is 

practicable on many systems in real world 

[15]. The main incompetency of this 

approach is that some performance rates 

have been eliminated and this model can't 

represent the real operational behaviors of 

the system. 

In recent studies, some methods were 

presented to make the problems closer to 

the real world. Fuzzy set theory is one of 

the useful tools for evaluating the MSS 

reliability with uncertain probabilities or 

uncertain performance rates [23]. Ding and 

Lisnianski [24], proposed a fuzzy UGF for 

evaluating the MSS reliability with fuzzy 

probabilities and fuzzy performance rates. 

In most studies, the performance rates of 

components are considered as described 

rates. But in most real systems, the 

performance rates of components are 

continuous. In [2, 3 and 4], there is a new 

type of CSF
1

7   8that permits the components 

to have all positions between completely 

working state and failed state presented. 

                                                   
7   1. Continuous structure functions 
8   2. Binary structure functions 

Block and Savits [2] and Baxter and Kim 

[5], decomposed the CSF to BSF
2
 and 

results were expressed as the system 

performance range. Stochastic behavior of 

CSS and its components have been 

discussed by Brunelle and Kapur [6], in 

this situation, elements have a combined 

discrete and continuous performance 

function. Lisnianski [14] presented the 

method of forecasting boundary points of 

reliabilities in a discrete-continuous 

system using UGF method. 

In this paper a new method for reliability 

and availability evaluation of series-

parallel CSS was presented. The 

performance rates of components in this 

model are continuous and they have their 

own probabilities.  The performance rates 

and corresponding probabilities decrease 

by time. In section 2   the system 

definitions have been introduced. A 

numerical example has been presented in 

section 3 to illustrate the method 

calculations and the section 4 deals with 

conclusion and further studies. 
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Nomenclature 

 

Elements index for CSS, nj ,,2,1  :j 

Number of different discrete states for j
st
 elements that 2jk :jk 

Index of discrete CSS, 2,1i :i 

Sub-system index, sl ,,2,1  :l 

Elements number of sub-system number l :ln 

All available combinations of elements discrete states :K 

Set of time dependent performance rate for element number j        :, 21 tGtGtG jjj  

Set of time dependent probability for element number j        :, 21 tPtPtP jjj  

Continuous performance rate for all CSS elements   :tX 

Weibull c.d.f shape parameter for performance rate  tX : 

Weibull c.d.f scale parameter for performance rate  tX : 

Time dependent probability function for working element in discrete 

system 
    :1 tRtP jj  

Time dependent probability function for failed element in discrete 

system 
    :2 tFtP jj  

Exponential c.d.f parameter of j  th element :j 

System structure function : 

UGF combination operator : 

Series elements system structure function :s 

Parallel elements system structure function :p 

System demand : 

System availability level at time t  for system demand   :,tA  

Availability level operator :A 

UGF for CSS   :,tZU 

 

Other parameters will be introduced when needed. 



A New Continuous Multi-State Reliability Model with Time Dependent Component Performance Rate           173 
 

 

 

2- System definition 

The discussed problem is a continuous 

reliability model with series-parallel 

structure. It means that the system has 

some series of subsystems and each sub-

system has some parallel components that 

have to be determined. Performance state 

of each component is continuous and the 

corresponding probability of each state is 

continuous and time-dependent. At the 

start of system’s operation, all the 

components are working and as time 

passes, the probability and performance 

rate of each state decreases. The 

components are non repairable and the 

strategy of sub-systems are active. This 

system is a generalized model of a MSS 

using UGF [15]. If   Zu j  considered as 

UGF of j st
 component, then we have: 

  



j

ji

k

i

g

ijj zpzu
1

.                                    (1) 

For calculation of output distribution 

function for MSS with   system structure 

function, the   operator can be used as 

follow: 
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   (2) 

In equation  2 ,
jjig  is performance state 

of j
th
 component and 

jjiP is the 

corresponding probability of this state and 

both of them are constant. 

In this paper, the number of performance 

states of each component is equal 2, 

  2,1i . It means that each component is 

working or failed and performance rate of 

working state decreases by passing of the 

time. So the continuous performance 

probability has two situations that illustrate 

by 1jP
 
for working state 2jP  and for failed 

state. j st
 working component has j  

constant failure rate. It means that 

component life distribution function is 

exponential. For every j  we know that

    1 tFtR jj , so we have: 

  t

jj
jetRP


1                                      (3) 

  t

jj
jetFP


 12                                 (4) 

By combining the equations  2 ,  3  and

 4 , the ju  can be calculated as follow: 

   
 

 
 

  0

1

.,

ztFztR

ztPtzu

j

tG

j

k

j

tG

jij

jji

j

jji

j




                      (5) 

The performance rate of each component 

decreases by working, so we consider the 

components performance states as: 

   tXgtG jjiji jj
.                                   (6) 
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In equation  6 ,  tG
jji   is divided into two 

sections: 
jjig  is a discrete performance 

rate and  tX j  is a continuous function. 

For j st
 component, 

1jig  is deterministic 

and can be different from a component to 

another one, and 0
2
jig . 

The performance rate function  tX j , has 

to have some characteristics to represent 

its behavior in the real world. Generally, 

the performance rate of equipments and 

components decreases by passing of the 

time. For example, a water pump works 

perfectly, when it is new and after a while, 

the amount of pumped water decreases. In 

this situation, we prefer to find a 

distribution to provide three conditions: 

1. At the start of working time, 

performance rate is in highest level, 

2. Performance rate decreases slowly after 

a long working time, 

3. After this time, performance rate 

decreases rapidly and the component tends 

to move towards the failed state. 

The normal and Weibull distributions 

functions have these conditions and we use 

Weibull distribution function 

I Weibull distribution, when 0  and 

43   , the p.d.f is very similar to 

normal p.d.f, so we can use this function 

instead of normal. 

Now we must define the amount of 

parameter   to achive to presente second 

condition. If  t̂  is as considered the time of 

the performance rate breakdown, then   

can be calculated as follows: 

   


1

ˆ

ˆ

tXLn

t
                                   (7) 

So, before t̂ , performance rate decreases 

slowly and after t̂  performance rate 

decreaes rapidly and tends to zero. 

Performance functions of identical 

working elements are: 

   



 







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t

j etXtX                               (8) 

And: 
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 (9) 

To find the system structure function 

    tGtG
nnii ,,

11   for a series-paralle 

system, we trace these two steps: 

Step 1: for each parallel sub-system, 

calculate system structor function P . 

Each system has  sl ,,2,1   sub-

systems and the number of sub-systems  is 

eqaul to ln  and nn
s

l

l 
1

. So, for each 

parallel sub-system we have: 
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 
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  slGG
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ss nnnnP

nnnP

nP












;,,

2;,,

1;,,

111

211

1

...

1

1















       (10) 

In equation  10 , 
lnG is the continuous 

performance level of lnj   component 

from l
st
 sub-system. 

Step 2: calculate the system structure 

function for all parallel sub-systems that 

are serialy linked to gether as: 

 
 
 
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








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1







             (11) 

The system structure function of a parallel 

system P , is presented in [15] as sum of 

the sub-system components as follow: 

Also, the system structure function of a 

series system P , is presented in [15] as 

minimum of the sub-system components 

as follows: 

   nns GGMinGG ,,,, 11              (12) 

Acoording to equations  15  and  16 , 

system total   is calculated as: 
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By combining equations number (6), (7), 

(8) and (13), the  tZU ,  is: 
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State space for a CSS can be divided to 

acceptable and unacceptable sets. It 

depends on the relations between CSS 

performance and the damand level that is 

determined by decision makers. 

The relation between system parformance 

and demand level   is presented in [23] as 

system state eligibility index as: 

 jj gr                                             (15) 

The i st
 state is acceptable if and only if 

0jr .  

vilability for a CSS is the probability that 

system remains at acceptable sub-set. In 

CSS, availability is defined as probability 

of CDD performance rate is equal or grater 

then demand level   as follow:  

   


jj

r

j grpA
j

,
0

              (16) 

We can calculate  tZU ,  fusing or a CSS 

A  operator as: 
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In equation (21), 



n

j
jkK

1
 are the total  
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descrete system states [15]. In the next 

section a numerical example will be 

presented to demonstrate the stage of 

model in obtaining the system availability.  

 

3- numerical example 

assume a pumping system that contains 2 

different pump stations and each pump 

station has two differet pumps. System 

structure is presented in figure 1.  

The Water flow is the performance rate 

level that it is continuous and time-

dependent. Each pump in each station has 

two states: completly failed and working 

(depending on time). Performance rate for 

these four components are ,3,4 2111  gg  

5,2 4131  gg . Corresponding probabilities 

has exponential distributions. The failure 

rate of the pumps are ,0001.01 

,0003.02  ,0002.03  0004.04  . We 

assume that pump works for 200
h
 and in 

this time performance rate of each pump 
 

decreaces by 1%, so we have 

  99.0200ˆ tX  and after this time 

performance rate of each pum decreases 

rapidly. Shape parameter is considered as 

3  and scale parameter can be 

calculated using Using equation  7 For 

this example the opproximate value of   

is near 1000 . The UGF for each 

component is as follows: 
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We considr 100t  for this problem. So 

   9607.0,9802.0,9704.0,9900.0100 jR  

and    1001100 jj RF   and the  tzu j ,  

are: 
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Fig 1. System state space 
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Using 
  operator and series-paralle 

structor presented in figure 3, system 

structor function is  

        tiGtiGtiGtiGMin
4

4
3

3,
2

2
1

1    

          tgtgtgtgMintX iiii 4321 4321 ,.   

The system output probability function is 

calculated as: 

        

         

 
 

0
.0011.0

998.1
.0385.0

997.2
.0093.0

996.3
.0281.0

995.4
.0183.0

993.6
.9047.0

0
.0008.0

994.4
.019.0

998.1
.0385.0

993.6
.9417.0

,
0

.0003.0
997.2

.0097.0
996.3

.0293.0
993.6

.9607.0

,4,,3,,2,,1

,4,,3,,2,,1

ZZZ

ZZZ

ZZZZ

ZZZZ

s

tzutzu
p

tzutzu
p

s

tzutzutzutzu



































(20) 

Because of the silmilar states, the total 

system states reduced to 6. If the demand 

level was assumed as 3 , CSS  would 

be calculated as follow: 

    

9511.00000281.00183.09047.0
6

1
.1

0
.0011.0

998.1
.0385.0

997.2
.0093.0

996.3
.0281.0

995.4
.0183.0

993.6
.9047.0

3,100,3


























i
ip

ZZZ

ZZZ

A

zUAA







(21) 

 

4- conclution and furtur studies 

In CSS reliability model survey, the 

components have extreme time-dependent 

states and it  causes the extreme system 

states. These systems have a large state 

space and reliability and availability 

evaluation is very difficault for them. In 

this paper we presented a new method for 

calculating the reliability of time 

dependent CSS that reduced the 

computation time and easily reached  an 

exact solution. 

In presented method, at first the 

components state were  divided to working 

and failed states. Then by generalizing the 

UGF method for multi-state system, the 

working state transformed to a continuous 

state. To have access to continuous and 

time-dependent perforamance states, we 

design the performance rate function. This 

functions were obtained using Weibull 

distribution function that is similar to 

normal distribution function. Each 

component was considered as a CFR 

component. Then availabilty of the system 

was calculated by finding the UGF 

function for output probability function for 

a continuous and time-dependent state 

system. We tried to make the raliabilty 

problems closer to the rael world. The 

results of this paper can be used in 

reliability optimization problems like 

RAP. 
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