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Abstract 

Heart chaotic system and the ability of particle swarm optimization (PSO) method motivated 

us to benefit the method of chaotic particle swarm optimization (CPSO) to synchronize the 

heart three-oscillator model. It can be a suitable algorithm for strengthening the controller in 

presence of unknown parameters. In this paper we apply adaptive control (AC) on heart delay 

model, also examine the system stability by the Lyapunov stability theorem. Then we 

improve results with using CPSO algorithm and define an appropriate cost function. At the 

end of we implement the proposed approach on an example. 
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1. Introduction 

Theory of synchronization is a recent 

research area that extensively investigated 

nowadays in many fields including 

mechanical systems, robotics, biological 

systems and etc. Synchronization of chaos 

is a phenomenon that may occur when two 

or more chaotic systems are coupled or 

one chaotic system drives the other. The 

problem of synchronization of chaotic 

systems in presence of environmental 

noise or the parameters of the uncertainty 

becomes more challenging [5, 7, 8, 11, 12, 

21, 24]. The use of synchronization of 

chaos in secure communication is certainly 

the main reason for the success for such 

research fields. There are many control 

techniques to synchronize chaotic systems 

such as: linear control, AC and active 

control. AC technique is applied for 

synchronizing two different chaotic 

systems to design an appropriate 

controller. Generally, in this method the 

aim is to find a controller and also a law 

for updating the parameters, so that the 

state variables of slave and master systems 

are synchronized With the each other 

asymptotically, also the Lyapunov stability 

theorem is used to check system stability. 

Chung used a PID controller for the 

synchronization two exactly identical 

chaotic systems started from different 

initial conditions by applying the PSO 

algorithm [٣]. The method presented in 

[٣], is based on minimizing the summation 

of the norm of synchronization error in 

discrete model of the system via PSO 

algorithm [1, 16, 22, 23, 25]. Mathematical 

modelling of heart rhythm and 

synchronization of heart oscillators are the 

goal of many research efforts [13]. Cardiac 

conduction system can be considered as a 

network of self-stimulate elements. In the 

heart three-oscillator system, each 

oscillator is represented one of the heart 

natural important pacemaker: atrial sinus 

(AS) node and atrial ventricular (AV) and 

His-Purkinje complex (HP). Because these 

elements show oscillation behavior, they 

can be modeled as nonlinear oscillators. 

Proposed oscillator model is designed in 

order to reproduce time series of action 

potential of natural pacemaker's cardiac, 

Therefore heart system is presented by a 

system of differential equations. There are 

different methods for evaluating cardiac 

function by measuring certain signals [15]. 

As a case study the presented method is 

applied to nonlinear oscillators of heart 

system [13]. For modeling of cardiac 

pacemaker, the Vander Pol oscillator is 

offered which is considered as follows 


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Where 21, xx  are Flow and voltage variables 

and ,,da  are system parameters, that 

based on their amounts the heart dynamics 

may be chaotic or non chaotic.  

There are numerous papers in areas AC [2, 

9, 14, 18] and CPSO algorithm [1, 3, 16, 

22, 23, 25] to synchronize, that we 

combine these two series on heart three-

oscillator model. 

In this paper, we propose a controller 

based on CPSO algorithm to synchronize 

two different chaotic systems in presence 

of unknown parameter. We synchronize 

heart three-oscillator model with AC in 

presence of unknown parameters and also 

checked system stability by the Lyapunov 

stability theorem. Then the parameters of 

controller adapt according to CPSO rule to 

minimize an appropriate cost function. 

 The article is organized as follows: In 

Section 2, we describe the CPSO 

algorithm and synchronization method, In 

Section 3, we present the heart 

mathematical model, In Section 4, we 

apply AC on heart delay model, then 

improve results with using CPSO 

algorithm, Section 5 contains 

implementation of the method and 

simulation and Section 6 is the 

conclusions. 
 

2. CPSO algorithm and synchronization 

method 

2.1. PSO algorithm 

PSO algorithm which was proposed by 

Kennedy and Eberhart in 1995 is a 

relatively new optimization method for 

nonlinear system optimization. This 

algorithm can handle unknown parameters 

by online adapting the controller's gains to 

pursue its goal to optimize the cost 

function, since it is not significantly 

sensitive to the dynamic of model. 

This technique involves simulating social 

behavior among particles that fly through a 

multidimensional search space. Particles 

would evaluate their positions or fitness 

levels with respect to the objective 

function in each of the iteration. In PSO 

algorithm the thi  particle ix is defined as a 

potential solution in D-dimensional space, 

where  

),....,,(
21 Diiii xxxx  . 

Changing of the position of each particle 

from one to another iteration can be 

computed according to the distance 

between the current position and its 

previous best position and distance 

between the current position and the best 

particle among the neighborhood of 

particle in the population. Then, updating 

of the velocity and the particle position can 

be obtained by the following equations 
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Where w is the inertia weight and 1r , 2r

are two random values in the range [0, 1],

gbestix  is the best particle among the 

neighborhood of particle in the population 

and 
pbestix  is the best historical position for 

particle ix , also 1c , 2c are the acceleration 

constants that represent the weighting of 

the stochastic acceleration terms that pull 

each particle ix  towards
gbestix  and 

pbestix  

positions. We use the Von Neumann or 

square topology in the canonical particle 

swarm than either of the traditional 

topologies. It is formed by arranging the 

population in a grid and connecting 

neighbors above, below, and to the right 

and left. The edges of the matrix are 

wrapped, Figure 1.  

According to existing literature, 1c  and 2c  

are often set to be 2. In order to reduce the 

number of iterations required to reach the 

optimal solution, a suitable selection of 

inertia weight ( w ) is introduced to provide 

a balance between global and local 

explorations. The inertia weight normally 

decreases linearly from 0.9 to 0.4 during 

the optimization process. The inertia 

weight can be set according to the equation 

(3), 

,
max

minmax
max iter

iter
wwww 


         (3) 

Where maxiter  is the maximum number of 

iterations (generations), and iter  is the 

current number of iterations. 

 
  

 
Figure 1. Von Neumann or square topology 

 
2.2. CPSO algorithm 

Because of premature convergence PSO 

algorithm, especially for search spaces 

with several local optima's, CPSO 

algorithm was developed based on the 

ergodicity of chaos optimization and the 

evolvement of PSO to improve the global 

convergence [25]. Moreover, in [16] and 

[25] is stated that chaos-based 

optimization algorithms can carry out 

overall searches at higher speeds than 

stochastic ergodic searches that depend on 
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probabilities. We assume that chaotic maps 

are adopted to select the numerical values 

for the parameters of the particles velocity 

equation (2). Different numerical studies 

have been conducted for choosing the 

better chaotic maps. In order to enrich the 

searching behavior and to avoid being 

trapped into local optimum, the well-

known Lorenz equations are employed for 

the hybrid PSO. That defined as follows 

xyzz
xzyxy

yxx


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
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Where  

)3/8,28,10(),,(
)0,1,0())0(),0(),0((





zyx

 

2.3. The synchronization method 

The synchronization of chaos is a process 

in which two or more identical or no 

identical chaotic systems with a distinct 

feature of motion set through a foreign 

force to achieve a set of common 

behaviors. The most common 

configuration for synchronous systems is 

considered as two subsystems which are 

coupled, one of them as slave system and 

the other as the master system. Purpose of 

synchronous is that slave system follows 

dynamics of master system. Chaotic 

systems according to the type and intensity 

of the coupling between the two systems 

are synchronized with each other via 

different methods, [4, 15]. For 

clarification, consider the following 

relationship between slave and master 

systems, respectively 

),()(
),()(

tvftv
tuftu

v

u







           (5) 

Where nRu , nRv  the system state 

variables, uf  and vf are chaotic nonlinear 

functions. These two systems can be 

synchronized by applying an appropriate 

control signal and the special relationship 

between their trajectories. In this case we 

have 

0))(())((lim 21 


tvDtuD
t

   (6) 

Functions 
1D and 

2D  determine the 

optimum relationship between state 

variables systems. In fact, they specify the 

type of synchronization. 

3. Modeling of the heart 

3.1. Record of the heart electrical 

activity 

The walls of the heart muscle called 

myocardium, which consists of four 

cavities; such as right and left atrium 

(Upper part), and right and left ventricles 

(lower part) [13]. There are different 

methods for the assessment of cardiac 

function which is done by measuring 

certain signals including tape 

electrocardiogram (ECG) which is the 

recording of the waves of electrical 
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activity of the heart by putting electrodes 

on the chest and around the heart. Each of 

the components on tape indicates the 

electrical activity of the heart cells. 

Stimulated sinus node causes electrical 

stimulation of the atria and creates a P 

wave that is the wave of atrial 

depolarization. After the wave of 

ventricular depolarization, the QRS 

complex(The combination of three waves 

Q , R and S) series arise and the 

subsequent wave creates T wave by 

ventricular repolarization. Sometimes 

another small wave after wave of T is seen 

that is called U wave. The reason of 

creation of the wave is repolarization 

papillary muscles in the heart. In distance 

of these waves there is not appropriate 

electrical activity and electro gram draws a 

horizontal straight line that is called the 

isoelectric line [10, 13]. 
 

3.2. Mathematical model of the heart  

The idea of heartbeat system modeling 

with coupled nonlinear oscillators was 

explained in 1928 by Vander Pol and 

Vander Mark. Cardiac conduction system 

may be assumed as a self-stimulate 

pacemaker that is composed of two 

oscillator subsystems. The first subsystem 

is AS node that has the highest pulse (60-

100 impulse per minute) between other 

oscillators of heart. The second subsystem 

consists of AV node (40-60 impulses per 

minute) [4].However, it was observed that 

the two oscillators for producing ECG 

signals are not very accurate. The reason is 

that the signal of first oscillator is related 

to the activation of AS node and right 

atrium and the signal of second oscillator 

is only related to the left ventricular 

depolarization. According to this 

hypothesis, it is possible to produce P 

curve, but QRS complex may not be 

produced, because this distance is mainly 

due to ventricular repolarization. These 

observations tempted us to incorporate a 

third oscillator, which represents the 

spread of a pulse through the heart that 

indicate HP in a physiological way [19, 

26]. In order to create a general model, we 

assume that all oscillators should be 

coupled asymmetry. In addition, external 

stimulation is entered into the system with 

regard to the oscillator frequency. This 

developed model can be shown with a set 

of differential equations as follows 

1

1 2
2

2 1 2 1 1 1
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Where pairs  21, xx  ,  43 , xx , and  65 , xx  

respectively, show AS, AV and HP 

oscillators. Parameters of this model 

introduce in Table 1. 

Because even small delays may Change 

the dynamics of the system, differential 

equations by incorporating time delay can 

cause drastic changes and creation of 

chaos in the system that has been 

described by the regular behavior, [19, 20, 

26]. Accordingly proposed mathematical 

model can change to consider the aspects 

of delay in coupled terms. Thus the 

governing equations are changed as below, 

where )(txx ii  , also )(   txx ii and  is 

time delay 

1

13 15

1 2
2

2 1 2 1 1 1

13 1 3 15 1 5

x x

x d (x 1) x c x a cos tAS :

R (x x ) R (x x ) 
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Table1. Parameters of three-oscillator system 

Definition Parameters Value 

AS  frequency 1c  1 
AV frequency 2c  2 

HP  frequency 3c  1 
AS voltage range 1a  5 
AV voltage range 2a  6 
HP voltage range 3a  4 

AS damping coefficient 1d  -40 
AV damping coefficient 2d  6 
HP damping coefficient 3d  7 

Frequency   2.04 

coupling coefficients between ix  and 
jx  ijR  

2,1 3113  RR  2,1 5115  RR  
3,1 5335  RR  

AS  membrane flow 1x  0.02 
AS  membrane voltage 2x  0.7 

AV membrane flow 3x  0 
AV membrane voltage 4x  0 

HP membrane flow 5x  0 
HP  membrane voltage 6x  0 
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4. Designing proper control signal 

4.1. Problem definition 

Consider the following two systems 

defined by 

uygy
xfx




)(
)(



                           (9) 

Where )(xf  and )( yg  are nonlinear chaotic 

functions in nR . Here the first system is 

considered as master (drive) system and 

the other one as the slave (response) 

system. Let us suppose that the functions 

)(xf  and )( yg  are totally different 

nonlinear functions. Our goal is to design a 

control law for the slave system in such a 

way that both master and slave systems are 

synchronized. This means that the error 

state vector xye   converges to zero as 

time converges to infinity [7]. During the 

synchronization of systems, it is possible 

that the system parameters be unknown. 

Therefore in this case for synchronization 

of systems, we use AC methods. By 

applying appropriate input controller to 

oscillators of model (8), we have 
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4.2. AC based CPSO algorithm 

In this method the controller is designed 

and is added to the slave system such that 

nonlinear parts of error dynamic between 

master and slave systems are eliminated. 

Also the Lyapunov stability theorem is 

used to check system stability. In the 

following we study synchronization of 

oscillators AS, AV and HP in case of time 

delay and that two of its parameters are 

unknown.  Assume that all parameters are 

known and 2d , 3d are       unknown, 

Figures 2-5. We consider parameter error 

( 3,2,~
idi ) and the synchronization error 

  4,3,2,1, ite i  as below [9, 18]. 

333222
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Control signal with using estimation of 

parameters 2d and 3d are determined as 

332211225241

2314
2

32

12
2

111

ˆ
cosˆ

cos

ekekekxdxcxd

taxcxxd

taxxdu











7146

3514435262

3536
2

53

24
2

322

ˆˆ
cosˆ

cosˆ

kuek
ekekxdxcxd

taxcxxd

taxxdu













 

To obtain the laws for updating parameters

2d̂  and 
3d̂ , the Lyapunov function method 

is used. Consider positive definite 

Lyapunov functions as 

2

~ 2
2

2
2

1
dev 

  

2223321535

2212

111153113

424
2

3222221

~~])(

)ˆ(

)(

~~[~~

ddeekcRR

ekdd

ekcRRR
xdxxdddeev












 

Thus by choosing 

24
2

322 )(~ exxxd   

11531131 cRRRk   

122
ˆ ddk   

215353 cRRk   

We have 01 v , also 

2

~~ 2
3

2
2

2
4

2
ddev 

  

33224322515335

714632

624
2

32143151

436
2

533322442

~~~~])(

)ˆˆ(

~~)(

~~[~~~~

ddddeekcRRR

kuekdd

xdxxdekRR

xdxxdddddeev













 

Thus by choosing 

46
2

543464
2

32 )(~,)(~ exxxdexxxd 

 

326

3151425153352

ˆˆ
,

ddk

RRkcRRRk




 

 

We have 02 v  

then 1v  and 2v are negative definite. Now, 

according to the Lyapunov stability 

theorem, we can conclude that   systems 

SA - AV - HP  which have unknown 

parameters will be synchronized 

asymptotically with definite control 

function, and synchronization error 

approaches to zero asymptotically, 

Figures 6- 9. 
 

To enhance the speed of synchronization, 

we optimize the unknown parameters in 

the controller with using CPSO algorithm. 

In our method the controller parameters (

1̂d , 2d̂ ) are adapted by applying CPSO 

algorithm which minimizes an appropriate 

cost function. 

When the error of synchronization 

vanishes, the cost function reaches to its 

global minimum. To reach this aim, 

parameters of controller are considered as 

positions of the particles in CPSO 

algorithm. So the controller adapts with 

the CPSO algorithm in presence of 

unknown parameters which may exist in 

the system. 
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Figure 2 

 
Figure 3 

 
Figure 4 

 
Figure 5 
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Figure 6 

 
Figure 7 

 
Figure 8 

 
Figure 9 
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4.3 Cost function 

Since the cost function affects on the 

controller performance, thus it must be 

defined carefully. Therefore we define the 

cost function as below 

 
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In which J is the continuous form of the 

cost function and T the simulation time. In 

many practical cases with the same initial 

condition, CPSO algorithm with this cost 

function must run several times to reach an 

appropriate controller. While the system is 

running, the position vector of the CPSO 

parameters is updated in ever iteration. 

First we define the following sequence 

then propose new cost function  

Th
thtt ii




0
0, 11                          (13) 

 

Since we are looking for new issues, in 

this paper we assume that the small 

positive parameter h  has to be selected 

randomly. Discussion about being variable 

h  and its sensitivity analysis will be 

discussed in future work.  

We propose the cost function as follows 


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ht

t
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We assume h  is near zero to 

preventchattering of response of system. 

Also, according to equation (13), it have 

been introduced with additional condition 

that for every i , Tti  . Index i  indicates 

number of updating times of the CPSO 

algorithm or updating times of the 

parameters of controller. In addition, the 

cost function is calculated for each particle 

with the integral of summation of square 

of synchronization error by equation (14). 

Since it may easily get trapped in local 

optima, when the cost function does not 

change for a while (If during the 

implementation of the algorithm for 

several consecutive iterations (at least 30 

iterations ) the cost function remains 

constant), we reduce the parameter h .  

The cost function must be defined such 

that its minimization in CPSO algorithm 

guarantees control of the system. To this 

aim, it can be considered as a positive 

semi-definite function of synchronization 

error, that we choose the square of the 

norm of error vector. While the system is 

running, it must be calculated online. This 

cost function is a function of time. It may 

lead to harsh changes in control signal and 

cause chattering in it. Especially, this case 

happens in the beginning when the error 

signal usually changes rapidly. To reduce 

this problem, the cost function is defined 

as the average of square of synchronization 

error vector norm in an appropriate time 

interval. If the time interval of integration 

does not change appropriately, this average 
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may not adapt unfortunately. Unlike to 

beginning time, when the error signals 

approach to zero, this function can have 

inappropriate effects like chattering 

(especially in presence of time varying 

parameter uncertainties). 

The most properties of proposed cost 

function are as follow 
  

1. During algorithm running, it is 

calculated online. 
  

2. The cost function is defined as the 

average of square of synchronization error 

vector norm in time interval [ it , 1it ] This 

can extremely inhibit from chattering of 

the response of system. Also, near the 

crossover points it prevents from trapping 

in a local optima and it leads to failure of 

these algorithms since in these points the 

error signal is small. 

3. In convergence, for preventing 

chattering of response of system, the 

integration interval becomes smaller until 

it reaches to some minimum length. The 

minimum interval length must be selected 

suitable, such that its average remains near 

zero and the controller could influence on 

behavior of the system, Thus, CPSO 

algorithm will be able to analyze the 

effectiveness of controller. 

So, algorithm determines the parameters of 

controller as control law equation (11) to 

minimize the cost function defined in 

equation (14). The integrand of J defined 

in equation (14) is a positive semi-definite 

function, thus in order to minimize the 

integral it would approach to zero and it 

guarantees the stability of system. CPSO 

algorithm is applied for minimizing the 

cost function. While the system is running, 

the CPSO parameters update with 

calculated cost function. At the beginning 

of simulation, the algorithm updates rarely. 

Since CPSO algorithm adapts the 

controller in presence of unknown 

parameters, so uncertainties can not 

perturb the controller performance. The 

CPSO algorithm tends to minimize the 

cost function defined in (14) and it does 

not depend significantly on the parameters 

( ik ) of (11). Thus without any additional 

information, CPSO algorithm can defeat 

the uncertainty parameters. 
 

5. Implementation of the method and 

simulation 

5.1. Implementation of the method 
 

As mentioned above, the parameters of the 

controller are considered as the positions 

of particles in swarm optimization 

algorithm. The adaptive method proposed 

as follow  
 

Step 1: The initial positions and velocities 

of particles (parameters of controller) are 

determined randomly and changes. 
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Step 2: While system is running, the 

control signal is calculated and is applied 

to system by equation (11). 
  

Step 3: The cost function is calculated for 

each particle by equation. (14). 
  

Step 4: The best solution of each particle (
k

iP ) and the swarm ( k
gX ) are found and 

saved, when the time reaches the optimum 

point defined by equation (13), otherwise, 

the algorithm is followed by step 8. 
 

Step 5: Checking of convergence of 

algorithm(the value of cost function 

convergence of zero). 
 

Step 6: Update of the PSO algorithm via 

calculating the new positions and 

velocities of particles by equation (2). 
 

Step 7: The interval of integration in cost 

function is reduced when the value of cost 

function does not change (Since we reduce 

the parameter h , equation (14)). 

Step 8: Go to step 2. 
 

5.2. Simulation 

In this simulation, we solve a set of 

differential equations related to the master 

and slave systems with maximum step size 

0.001. In performance of simulation, we 

used parameters defined in sub-section 4.1. 

The control signal is assumed to be 

saturated at u = ±60 because in real 

systems cannot be applied to an 

unbounded control law. 
  

Case 1: Systems with certain parameters  

In this case study, there is no uncertainty 

in the system and CPSO algorithm runs 

with the values of 30pop (Population), 

221  cc , 99.0w where, pop represents the 

population size of swarm under 

consideration, 1c  and 2c  corresponding to 

the cognitive and the social parameters 

respectively and w  is the inertia weight. 

Simulation results proposed in, Figures 

10-17, that variation of cost function is 

versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Synchronization of a Heart Delay Model with Using CPSO Algorithm in Presence of Unknown Parameters   83 
 

 

 

 

 
Figure 10 

 
Figure 11 

 
Figure 12 

 
Figure 13 
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Figure 14 

 
Figure 15 

 
Figure 16 

 
Figure 17 
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Case 2: Systems with uncertainty 

In this case study, the parameters of CPSO 

algorithm run same as case 1. But this case 

study contains parameter uncertainty. For 

strengthening of controller in presence of 

parameters uncertainty, control law 

equation (11) is applied to a system which 

its real dynamic follows from equation 

(10) with following parameters, [14, 21] 

)(1.02 151 trR  )(1.03 253 trR   

)(1.05 31 trd  )(1.06 42 trd   

)(1.07 43 trd  )(1.01 611 trc   

)(1.02 512 trc  )(1.01 613 trc   

 

Where )(tri ’s are normally distributed 

random functions. Simulation results are 

shown in Figures 18- 21. These results 

contain the variation of cost function 

versus time. 

By choosing parameters as shown in 

Table 1, we designed controller to the 

model of three-oscillator system of the 

heart in case of time delay and in presence 

of unknown parameters by applying CPSO 

algorithm and AC.  

Simulation results related to 

synchronization time delay problem with 

unknown parameters after over 50 runs are 

shown in Tables 2,3.  

Case 1: With AC 

Case 2: Using PSO algorithm on case1. 

Case 3: Using CPSO algorithm on case1. 

Case 4: Study uncertainty on case 2. 

The results in Tables 2, 3 show the 

advantages of the CPSO algorithm in 

compared to the adaptive and PSO 

methods. Also confirms its strength in the 

face of uncertainty. 

 

Table 2. Synchronization time of 2x  and 4x  for time delay problem of the heart 

Mean time  
 Case 1 Case 2  Case 3  Case 4  
15 1.129 1.321 1.311 1.333 
28 1.129 1320 1.309 1.328  
40 1.129 1.318 1.306 1.325 
50 1.129 1315 1.302 1.321 

Best time 
 Case 1 Case 2  Case 3  Case 4  
15 0.925 1.309 1.285 1.293 
28 0.925 1.312 1.284 1.290 
40 0.925 1308 1.286 1.288 
50 0.925 1.306 1.283 1.286 
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Table 3. Synchronization time of 4x  and 6x  for time delay problem of the heart 

Mean time  
 Case 1 Case 2  Case 3  Case 4  
15 1.381 1.425 1.417 1.417 
28 1.381 1.422 1.415 1.413 
40 1.381 1.421  1.416 1.412 
50 1.381 1.419 1.413 1.411 

Best time 
 Case 1 Case 2  Case 3  Case 4  
15 1.121 1.261 1.213 1.225 
28 1.121 1.258 1.212 1.224 
40 1.121 1.259 1.213 1.222 
50 1.121 1.259 1.211 1.219 

 

 
Figure 18 

 
Figure 19 
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Figure 20 

 
Figure 21 

 

6. Conclusion  

To synchronize the heart three-oscillator 

model in presence of parameter unknown, 

we proposed an AC based of CPSO 

algorithm. In this approach parameters of 

algorithm were adapted with CPSO to 

minimize tracking error. The most 

advantage of this controller is ability to 

eliminate tracking error without any 

information about uncertainty bounds. 

Because of strengthening of controller, the 

CPSO algorithm can defeat parameter 

uncertainties of the system even in 

presence of parameter unknown. Also we 

have shown that nonlinear oscillators can 

be used to model the heartbeat activity and 

dynamic rhythm of the heart is modeled in 

case of three-oscillator with delay. In this 

model each oscillator is represented one of 

the heart natural important pacemaker: AS, 

AV and HP. 
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