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Abstract 

One way to rank DMUs in DEA is the cross efficiency method. In this method, the efficiency 

of each DMU is calculated by other DMUs optimum weights, which makes the ranking more 

acceptable for managers. Existing alternative optimum weights in cross efficiency method 

lead to several ranks for DMUs. Several secondary goals have introduced to avoid this 

problem, till now. In this paper, a new model is presented, that would be satisfying and 

acceptable for all DMUs. Therefore, by solving this model, the optimum weights are 

agreeable and fairy for DMUs. 

 

Keywords: Data Envelopment Analysis, Ranking, Cross Efficiency, Secondary Goal. 

                                                
*Corresponding author: Shoja@iaufb.ac.ir  

                                    

               Journal of  New Researches in Mathematics                                                                                Science and Research Branch (IAU)    



R.Mehrjoo, et al /JNRM Vol.1, No.2, Summer 2015                                                                                                    48 
 

 

 

 

1. Introduction 

Ranking DMUs in data development 

analysis models was introduced by Sexton et 

al (1986), which is an effective way to rank 

DMUs. However, in this method, existence 

of alternative weights provides several ranks 

for the DMUs, makes the model unable to 

rank them correctly. In fact, existence of 

alternative weights caused to several rank. 

After that, many different methods have 

been presented to find the most appropriate 

weight among optimum weights, in each a 

secondary goal has been considered as an 

objective function. Regarding the secondary 

goal, a weight would be selected which 

achieve those goals. Doyle and Green 

(1994) introduced aggressive and benevolent 

models. Wang et al (2011) discussed the 

ways to define weights in cross efficiency. 

Furthermore, Wang et al (2011) applied the 

Ideal and Anti-Ideal DMUs for combination 

of DMUs’ cross efficiency. Liang et al 

(2008) used Game Theory in cross 

efficiency and generated game efficiency. 

Rudder and Reucher (2011) represented a 

DEA model by using Peer-DMU which is 

optimized cross efficiency. More 

information would be found in Jahanshahloo 

et al (2008), and Alder et al (2002). 

In this paper, a model is introduced to deal 

with such problem, in which the difference 

between cross efficiencies of DMUs 

obtained by DMUO would be minimized 

simultaneously. In this regard, by solving 

one model for DMUO, among all weights 

related to that, the one would be selected 

that minimizes the difference. Therefore, the 

obtained weight can be an equitable criterion 

for ranking the other DMUs, which makes 

the ranking process complete, satisfying, 

and acceptable. In fact, the weights extracted 

in this model, minimize the difference of 

upper-band and lower-band. The upper-band 

is the maximum efficiency score which 

could be given to other DMUs by the 

optimum weight of DMUO. On the other 

hand, the lower-band is the minimum 

efficiency score. Initially, the model 

obtaining in this way, is non-linear that 

would be illustrated that some constraints 

are redundant, so they can be omitted. Then 

the presented model would be solved for 

each DMU. Regarding the resulted weight 

for each DMU, the cross efficiency for all 

DMUs would be implied, and then ranking 

is calculated by combination of them. 
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2. CCR model 

Suppose that we have N determining unit of 

DMU that use input M`s to produce output 

S`s . The vector of  Xj (j = 1, … , n ) is the 

corresponded vector of DMUj`s inputs that 

Xj=(X1j,…,Xmj) is an m vector and the 

vector of Yj is a correspondent vector of 

DMU that Yj= (Y1j,…,Ysj)  is a kind of 

vector with S and vector relating to DMUj is 

defined in the form of (Xj,Yj) j=1,…,n . In 

self – assessment method with solving the 

following model, an efficiency amount for 

DMU0 is obtained. The following model is a 

CCR multiple model. 

ߠ   ݔܽܯ =
ݕ௧ݑ

ݔ௧ݒ
 

.ݏ                .ݐ
௬
௫

≤ 1         ݆ = 1, … , ݊       (1) 

ݑ ≥ ݒ      ≥  

 

Which is fractional model of CCR, but with 

changes of Charnes & Cooper (1962) this 

model is turned into the following linear 

model which is called CCR model with 

input nature. 

ߠ
∗ =  ݕ௧ݑ      ݔܽܯ

ݔ௧ݒ = 1 
ݕ௧ݑ  − ݔ௧ݒ ≤ ݆       = 1, … , ݊                (2) 
,ݑ)  (ݒ ≥  .

ߠ
∗

  the obtained optimum amount from 

above – mentioned model, is the efficiency 

amount of DMU0 which has been obtained 

through self – assessment method. 

 

3. Cross efficiency 

For obtaining cross efficiency of other 

DMUs we use optimum multiplications of 

the model and place vector of Xj ,  Yj  in it 

and then they are defined. 

ܧ =     ∑ ௨ೝೖ
∗ ௬ೝೕ   ೞ

ೝసభ

 ∑ ௩ೖ
∗ ௫ೕ


సభ

          ݆ = 1, … , ݊  

 

It is obvious that ϴ0
*= Ekk and also 

because  ∑ ݒ
∗ ݔ


ୀଵ = 1 is one offeatur of 

this model , so  ܧ =  ∑ ݑ
∗௦

ୀଵ ݕ . The 

intersection efficiency relating to DMU has 

been defined as follows: Ej = ଵ


∑ ܧ

ୀଵ  

 

4. propose model 

It is assumed that all DMUs were evaluated 

by CCR model, so the efficiency of them 

were obtained, where ߠை
∗  is the efficiency of 

DMOU. Consider the following model: 

 

ݑߠ          ݊݅ܯ
 − ݈ߠ

0 

.ݏ        .ݐ
ܷ ைܻ

ܸܺை
= ைߠ

∗ 
ೕ

ೕ
≤ 1              ݆ = 1, … , ݊                     (3) 

௨ߠ  
 = ݔܽ݉ ቄభ

భ
, మ

మ
, … , 


ቅ                (*) 

ߠ  
 = ݉݅݊ ቄభ

భ
, మ

మ
, … , 


ቅ               (**) 

(ܷ, ܸ) ≥ 0. 
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It should be mentioned that if 
బ

 exists in 

(*) and (*,*) constraints, ߠ
 = ߠ

௨  and the 

value of objective function would be zero. 

Since the existence of DMU is not 

necessary, in (*) and (*,*) expression, 
బ

  

would be removed. Also, (*) and (*,*) 

constraints in (3) model converted in the 

following in model (4). 

min      ߠ௨
 − ߠ

  
.ݏ        .ݐ


= ∗ߠ

         
ܷ ܻ

ܸ ܺ
≤ 1            ݆ = 1, … , ݊ 

௨ߠ
 ≥ ೕ

ೕ
         ݆ = 1, … , ݊,    ݆ ≠ 0          (4) 

௨ߠ
 =

ܷ ଵܻ

ܸ ଵܺ
௨ߠ ݎ 

 =
ܷ ଶܻ

ܸܺଶ
ݎ  …  ݎ

௨ߠ  
 =

ܷ ܻ

ܸܺ
     (∗) 

ߠ
 ≤ ೕ

ೕ
         ݆ = 1, … , ݊,    ݆ ≠ 0  

ߠ
 =

ܷ ଵܻ

ܸ ଵܺ
ߠ ݎ 

 =
ܷ ଶܻ

ܸܺଶ
ݎ  …  ݎ

ߠ  
 =

ܷ ܻ

ܸܺ
            (∗∗) 

(ܷ, ܸ) ≥ 0. 
 

Theorem1: in model (4), (*) and (*,*) 

constraints are redundant in the optimum 

solution. 

Proof:  

Since the ߠ௨
  is minimized in objective 

function, so one of the equations in (*) 

constraint applies in optimum solution 

definitely, and because ߠ
  is maximized in 

objective function, then one of the equations 

in (**) constraint applies in optimum 

solution. 

Therefore, according to Theorem, model (3-

2) and following model have the same 

optimum solution. 

min ௨ߠ    
 − ߠ

  
.ݏ          .ݐ


= ∗ߠ

    
ೕ

ೕ
≤ 1      ݆ = 1, . . . , ݊                              (*) 

௨ߠ
 ≥ ೕ

ೕ
    ݆ = 1, . . , ݊ ,    ݆ ≠ 0               (5) 

ߠ
 ≤ ೕ

ೕ
    ݆ = 1, . . , ݊ ,    ݆ ≠ 0  

(ܷ, ܸ) ≥ 0.  
 

Theorem2: The model (5) and the following 

one are equivalent. 

min ௨ߠ    
 − ߠ

  
.ݏ          .ݐ


= ∗ߠ

    

௨ߠ
 ≥ ೕ

ೕ
    ݆ = 1, . . , ݊ ,    ݆ ≠ 0               (6) 

ߠ
 ≤ ೕ

ೕ
    ݆ = 1, . . , ݊ ,    ݆ ≠ 0  

௨ߠ
 ≤ 1                                                    (**) 

(ܷ, ܸ) ≥ 0.  
 
In fact, in model (5) the (*) constraint is 

replaced by (**)  constraint in model  (6). 

Proof: 

It is obvious that (*) and (*,*) constraints  

in model (6) cause to application of (*) 

constraint in model (5). So, by solving the 

model (6) the obtained optimum solution 

makes the difference of cross efficiency 
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minimum. At least , the obtained weight 

results that one of the DMUs gets the 

highest efficiency score, and the other one 

has the minimum reduction. 

 

5. Numerical example 

This example was resented in several papers 

till now. we compose this example for 

illustrating our model. Information of the 

problem is shown in table (1). 

The weights of each DMU after solving 

model is given by table (2). 

So in this case because of obtaining several 

efficient DMUs, A method to rank all 

DMUs is necessary. We used our method 

and solve the model for each DMU and the 

unique weights were obtained that shown in 

table (3). 

 
Table (1) 

DMU ࢞ ࢞ ࢟ ࢟ ࢋ࢘ࢉ࢙ ࡱࡰ 
1 1.5 0.2 1.4 0.35 1 
2 4 0.7 1.4 2.1 1 
3 3.2 1.2 4.2 1.05 1 
4 5.2 2 2.8 4.2 1 
5 3.5 1.2 1.9 2.5 0.9775 
6 3.2 0.7 1.4 1.5 0.8674 

 

Table (2) 

 ࢛ ࢛ ࢜ ࢜ ࣂ 

DMU1 1 0 5.00 0.71 0 

DMU2 1 0 1.43 0 0.48 

DMU3 1 0.31 0 0.24 0 

DMU4 1 0.19 0 0 0.24 

DMU5 0.98 0.11 0.51 0.12 0.3 

DMU6 0.87 0.15 0.72 0.16 0.43 
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Table (3) 

࢛ࣂ  −  ࢛ ࢛ ࢜ ࢜ ࢛ࣂ ࣂ ࣂ
DMU1 0.14 0.86 1 0.2 0.8 0.2 0.49 
DMU2 0.17 0.83 1 0.18 0.82 0.18 0.49 
DMU3 0.2 0.8 1 0.32 0.68 0.31 0.51 
DMU4 0.14 0.86 1 0.18 0.8 0.2 0.49 
DMU5 0.17 0.83 1 0.18 0.82 0.19 0.49 
DMU6 0.18 0.82 1 0.17 0.83 0.18 0.49 

 

Theorem3. If the under evaluating DMU is 

inefficient, then for the optimum solution of 

model (6) always  ߠ
௨∗ = 1. 

Proof. According to the constraints ߠ௨
 ≤ 1 

and  ߠ௨
 ≥ ೕ

ೕ
 : 

ܷ ܻ

ܸ ܺ
≤ 1 ، ݆ = 1, … , ݊ ، ݆ ≠  

 

And also because ߠ
∗ ≤ 1 then 


≤ 1 and 

the constraint (ܷ, ܸ) ≥ 0 causes each 

feasible solution of model (3-4) is a feasible 

solution for CCR model in evaluating DMUo 

, and ߠ
∗ = 


 , so each feasible solution of 

model (3-4) is an optimum solution in CCR 

model in evaluating DMUo . Because  at 

least one of constraints 
ೕ

ೕ
≤ 1  is tight, 

then ߠ
௨∗ = 1. 

 

 

 

6. Conclusion  

In this paper, A new method is introduced 

 for ranking DMUs as a secondary goal. The 

model minimizes the differences between 

upper and lower bounds af solutions. So, all 

DMUs is ranked by this method. Also we 

present a simpler model for inefficient 

DMUs. 

A numerical example is given in this paper, 

solved by the new method, which ranked all 

the DMUs. This method can be developed in 

other cases, for example : DMUs by interval 

data, negative data and etc. 
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