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Abstract 

The role of non-Archimedean   in the DEA models has been clarified, so that the associated 

linear programs can be infeasible (for the multiplier side) and unbounded (for the 

envelopment side) with an unsuitable choice of  . This paper shows that the overall 

assurance interval for   in DEA models is unique by the concept of extreme directions. Also, 

it presents an assurance value for   using only simple computations on inputs and outputs of 

DMUs. 
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1. Introduction 
 

DEA is a mathematical method for 

determining the relative efficiency of 

decision making units (DMUs). The data 

are input-output observations for a number 

of DMUs using varying amounts of the 

same inputs to produce varying amounts of 

the same outputs. Charnes et al. (1978) 

proposed a linear programming for 

determining the relative efficiency of 

DMUs. 
 

In recent years, DEA has enjoyed both 

rapid growth and widespread acceptance. 
 

A new bibliography in website 

www.deazone.com contains almost 9000 

studies employing the methodology of 

DEA. In these studies, the two most 

frequently used models are the Charnes, 

Cooper and Rhodes (CCR) model and 

Banker, Charnes and Cooper (BCC) 

model, both of which involve the non-

Archimedean  . 
 

Even though some researchers prefer to 

apply the Archimedean DEA models for 

their researches, the DEA literature shows 

that the non-Archimedean   DEA models 

are still widely accepted and applied to a 

large number of practical problems. 

Mehrabian et al. (2000) defined the overall 

assurance interval of the non-Archimedean 

  for all of DMUs in CCR and BCC 

models. They have shown that an 

assurance value for   using a single LP is 

enough for finding non-Archimedean  . 
 

In this paper, the concept of extreme 

directions in mathematical programming is 

used to provide strong support for the 

validity and uniqueness of the overall 

assurance interval. Moreover, it is shown 

that an assurance value for   can be 

determined using only simple 

computations on inputs and outputs of 

DMUs. 
 
 

2-Non-Archimedean DEA Models and 

the Overall Assurance Interval for ε  
 

 

Consider n  DMUs, each consuming 

varying amounts of m  inputs in the 

production of s  outputs. The m n  matrix 

of inputs is denoted by X and the s n  

matrix of outputs by Y . Furthermore, ijx  

denotes the amount consumed of the i th 

input by the j th decision making unit, and 

rjy  denotes the amount production of its r

th output. Finally, jX  and jY  denote, 

respectively, the vector of inputs and 

outputs for the j th DMU. 
 

The input-oriented linear programming 

problem formulation for the CCR and CC 
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(3) 

models (both the envelopment and the 

multiplier sides) is as follows: 
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(2) 

 

where 1  is a row vector of units. 
 

Mehrabian et al. (2000) introduced the 

overall assurance interval for   as *[0,  ]  

where  * * *
1min , , n    , such that *

k  is 

the optimal value of the following 

problem: 

max  
s.t.    1,
        0,
        0,
        0.

kVX
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U
V







 
 
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1

 

Each element of the overall assurance 

interval *[0,  ]  is defined as an assurance 

value of the non-Archimedean   for 

feasibility/boundedness of the 

multiplier/envelopment side in the CCR 

model for all DMUs. 
 

3. The Directions Method 

The concept of extreme directions plays an 

important role in the theory of 

mathematical programming (see Bazaraa 

et al. (2006) and Murty (1993)). This 

concept is used to develop a new method 

which we call the Directions Method, for 

calculating an overall assurance interval of 
*[0,  ]d . 

 

Definition 1: 

Let S  be a nonempty convex set in n� . A 

nonzero vector d  in n�  is called a 

direction of S  if for each x S , 

x d S   for all 0  . Two directions 

1d  and 2d  of S  are called distinct if 

1 2d d  for any 0  . A direction d  of 

S  is called an extreme direction if it can 

not be written as a positive combination of 

two distinct directions, that is, if 
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1 1 2 2d d d    for 1 2,  0    then 

1 2d d  for some 0  . 
 

Lemma1: Given that 

 : ,  0S x Ax b x    is a nonempty set 

where A  is an m n . Then, d  is a 

direction of S  if and only if 0,  0d d   

and 0Ad  . 
 

Proof: See Bazaraa et al. (2006). 
 

Theorem 1: 

Suppose that the set of 

 : ,  0S x Ax b x    is not empty and let 

1, ,d d  be the extreme directions of the 

set S . Then, there is a finite optimal 

solution to LP of  min :cx x S  if and 

only 0jcd   for 1, ,j    . 
 

Proof: See Bazaraa et al. (2006). 
 

4. The Uniqueness of the Overall 

Assurance Interval 
 

Let CCR j  be the CCR p  model for the 

evaluating DMU j . Without losing 

generality, we suppose 0   in (1). 

Therefore, the matrix form of CCR j  is as 

follows: 
 
 

min  ( )
s.t.    ,
        0,

c x
Ax b
x






               (4) 

 

where ܣ = ඄
0

௝ܺ
 ܻ
௦ܫ− ܺ−

0
 0
௠ܫ−

ඈ , ݔ = ቦ
ߠ
0

ܵା 
ܵି

ቧ  ,  

(ߝ)ܿ = ቦ
1
0

 1ߝ−
1ߝ−

ቧ  , ܾ = ඄ ௝ܻ
0

ඈ   

 
Now, suppose that 1, ,

j
d d  are extreme 

directions for CCR j  ( 1, ,j n  ), where 

( ,  ,  ,  ) ,  1, ,T
k k k k k jd d d d d k       . In 

order to guarantee the boundedness of 
CCR j , we show that there is a positive   
such that ( ) 0kc d   for 1, , jk     which 
is equivalent to the following inequality: 
 
 

,  1, ,k k k jd d d k      1 1       (5) 

 

Lemma 2: 
 

The set  : 0,  1, ,k

k k

dj
jd d

H k k


 
  

1 1
   

is nonempty, for 1, ,j n  . 
 

Proof: For a given j , we only need to 

show that there is a 0 {1, , }jk     such 

that 0k kd d  1 1  and 
0

0kd  . By 

contradiction, suppose that 0k kd d  1 1  

for 1, ,k t   and 
0

0kd   for 

1, , jk t    . Therefore, ( ) 0kc d   for 

1, ,k t   and ( ) 0kc d   for 

1, , jk t     imply that CCR j is 

bounded for all 0  , which is a 

contradiction. 
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Theorem 2: 

The problems CCR  ( 1, , )j j n   are 

bounded for *0 d    where 

min :  ,  1, ,j jk

k k

d k H j n
d d



  

 
   

 1 1


 
(6) 

 * min :  1, , .j
d j n     (7) 

 
 

Proof: The proof is obvious from Lemma 2.  
 

By the following theorem, we are now able 

to show that the overall assurance interval 

introduced in Definition 1 is equal to the 

one obtained by the directions method. 

 

Theorem 3: * *
d   

Proof:.Suppose * *
d  . We consider two 

outcomes: 
 

 Case 1. * *
d  . Let *

d  . Since 

*[0,  ]  is the largest overall assurance 

interval (see Mehrabian et al. (2006)), 

there is at least one j  for which the CCR j  

problem is unbounded and this is 

impossible by Theorem 2. 
 
 

 Case 2. * *
d  Let *  . Hence, 

there is at least one j  such that the CCR j  

problem is unbounded. From (7), there is a 

0 0 (1 )j j n   such that 0* j
d  .Now, (6) 

implies that there exists a 0
0

jk H  that 

00 k

k k

dj
d d



  


1 1
.Therefore, 0 *k

k k

d

d d



 


1 1

implies that 
0

*( ) 0kc d  . This means that 

the 
0

CCR j  problem is unbounded, which 

contradicts Theorem 2. 

From the above two cases, we can deduce 

that * *
d  . 

 
 

5. An Example 

In the following example, we will obtain a 

unique upper bound for non-Archimedean 

  in the CCR model. Consider the 

following data domain consisting of three 

DMUs each consuming one input to 

produce one output (Table1). 
 

 

Table 1: Three DMUs with one input and 

one output 
 

For calculating *
d , we need to obtain all 

the extreme directions 
1 2 3( ,  ,  ,  ,  )j T

j j j j j jd d d d d d d    for each 

CCR j  problem ( 1,2,3)j   as reported in 

Table 2. 
 

 
 

 

 1DMU  2DMU  3DMU  

Input 1 
1
2

 2 

Output 1 1 2 
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1CCR  2CCR  3CCR  

1
1

1 1 1, ,0,0, ,0
3 3 3

T

d    
 

 1
2

52 13 26,0,0, , ,0
91 91 91

T

d    
 

 1
3

1 1 1,0,0, , ,0
4 4 2

T

d    
 

 

2
1

2 1 2,0,0, , ,0
5 5 5

T

d    
 

 2
2

1 1 1, ,0,0, ,0
2 4 4

T

d    
 

 2
3

1 2 2, ,0,0, ,0
5 5 5

T

d    
 

 

3
1

1 2 2,0, ,0, ,0
5 5 5

T

d    
 

 3
2

1 1 1,0, ,0, ,0
3 3 3

T

d    
 

 3
3

1 4 4,0, ,0, ,0
9 9 9

T

d    
 

 

4
1

1 1,0,0,0,0,
2 2

T

d    
 

 4
2

2 1,0,0,0,0,
3 3

T

d    
 

 1
3

1 2,0,0,0,0,
3 3

T

d    
 

 

 

Table 2: The extreme directions for the problems  ( 1,2,3)jCCR j   

 

We have 1 1
2  , 2 1   and 3 1

4  . 

Therefore,  * 1 2 3 1
4min , ,d     . So, 

Theorem 3 implies that CCR j  problems 

( 1,2,3)j   are bounded for each 1
4  . 

Also, it is obtained that * 1
4  . Thus, 

* *
d   

 

6. An approach for obtaining an 

assurance value 
 

It is proved that for determining an 

assurance value of the non-Archimedean 

  in the CCR model, solving the 

following LP is enough (see [4]). 
 
 

:max 
s.t.         1,            1,

             0,  1,   

             0,
             0.

j

j j

P
VX j n
UY VX j n

U
V






  

   

 
 

1
1

 
(8) 

 
 

The following theorem presents an 

assurance value for   using only simple 

computations on inputs and outputs of 

DMUs. 
 

Theorem 4: min{ ,  }p pq   Is an 

assurance value of the non-Archimedean 

  in the CCR model where, 

 1/ max j jp X 1  and  min /j j jq X Y 1 1  
 

Proof: It is sufficient that, prove  , ,V U  

is belongs to the feasible region of the 

problem P , where V p 1  and U pq 1 . 

For this means, we have 
 
 

 ܸ ܺ௜ = 1݌ ௜ܺ  ≤, ܷ ௜ܻ − ܸ ܺ௜ = 1ݍ݌ ௜ܻ − 1݌  ௜ܺ =

1݌ ௜ܻ ݍ)  − 1ܺ௜ ௜ܻ⁄ ) ≤ 0, ݆ = 1, … ݊ 
 

Also, pq U  1 1  and p V  1 1 . 

In the given example, 
1 1
2 21/ max { } 1/ max{1, ,2}j jp X  1  
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and
1/21 2 1

1 1 2 2min { / } min{ , , }j j jq X Y  1 1  

Therfore, 1
4min{ ,  }p pq   . 

 

7. Conclusion 

In this paper, it is shown that the overall 

assurance interval for   in DEA models is 

unique by the concept of extreme 

directions. Also, it is provided an 

assurance value for non-archimedean 

epsilon, using only arithmetic operations 

on the inputs and outputs of DMUs. 
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