A box-uncertainty in multi-objective optimization: an ε-constraint approach
Subject Areas : StatisticsShima Soleimani manesh 1 , Mansour Saraj 2 , Maryam Moemeni 3 , Mahmoud Alizadeh 4
1 - Department of mathematics, Islamic Azad University, Ahvaz branch, Ahvaz-Iran
2 - , Department of Mathematics , Faculty of Mathematical Sciences
, and Computer, Shahid Chamran University of Ahvaz, , Ahvaz-IRAN
3 - Department of mathematics, Islamic Azad University, Ahvaz branch, Ahvaz-Iran
4 - Department of mathematics, Islamic Azad University, Ahvaz branch, Ahvaz-Iran
Keywords: جواب کارای ضعیف استوار, برنامهریزی کسری خطی چند هدفه, بهینهسازی استوار, عدم قطعیت جعبهای, روش اپسیلون قید,
Abstract :
In the last few decades there has been lots of discussion in the literature regarding robust optimization. Since Epsilon constraint is one of the most important technique in interactive problems, therefore in this paper, due to the importance of robust optimization and multi-objective programming problems, we consider Multi-Objective Linear Fractional Programming (MOLFP) problem in the presence of box-uncertainty in the coefficients of the objective functions. We propose an approach based on ε-constraint and Charnes-Cooper methods to obtain weakly robust efficient solutions, that have special importance in the literature, for a MOLFP problems in the presence of uncertain data. Charnes-cooper method is applied to reduce a fractional programm to a non fractional programm. At the end we write the robust counterpart of the UMOLFP model in the presence of the box-uncertainty and it's equivalent linear programming problem: Finally a numerical example is used to show the usefulness of the proposed approach.
[1] A. Charnes, W. W. Cooper, Programming with linear fractional functional, Navel Research logistic Quarterly, 9(3-4), (1962), 181-183.
[2] G. R. Britan, A. J. Navaes, Linear programming with fractional objective function, Operations Research,21(1) , (1973) , 22-29.
[3] B. D. Craven, Fractional Programming, Helderman Verlag Berlin, (1988).
[4] J. S. H. Kornbulth, On the use of multiple objective linear programming algorithms to solve problems with fractional objectives, European Journal of Operational Research, 23(1), (1986), 78-81.
[5] H. P. Benson, Finding certain weakly efficient vertices in multiple objective linear fractional programming, Management Science, 31(2), (1985),240-248
[6] J. P. Costa, An interactive method for multiple objective linear fractional programming problems, OR-Spectrum. 27, (2005), 633-652.
[7] J. P. Costa, Computing non-dominated solutions in MOLFP, European Journl of Operational Research, 181(3), (2007), 1464-1475.
[8] J. P. Costa, M. J. Alaves, A reference point technique to compute non-dominated solution in text MOLFP, Journal of Mathematical Sciences, 161, (2009), 820-830.
[9] A. Ben-Tal, EL. Ghaoui, A. Nemirovski, Robust optimization, Princeton University Press, (2009).
[10] J. R. Birge, F. Louveaux, Introduction to stochastic programming, Springer-Verlag, (1997).
[11] G. B . Dantzing, Linear programming under uncertainly, Management Science, 1(314), (1955),197-206.
[12] J. Mula, R. Polar, J. P. Garcia, MRP with flexible constraints: fuzzy mathematical programming approach, Fuzzy sets system, 157(1), (2006), 74-97.
[13] D. Bertsimas. V. Gupta, N. Kallus, Data-driven robust optimization, Mathmetical programming, 167(2), (2018), 235-292.
[14] J. M. Buhmann, A. Y. Gronskiy, M. Mihalák, T. Prӧger, R. Šrámek, P. Widmayer, Robust optimization in the presence of uncertainty: A generic approach, Computer and System Sciences, 94. (2018), 135-166.
[15] J. M. Buhmann, A. Y. Gronskiy, M. Mihalák, T. Prӧger, R. Šrámek, P. Widmayer, Robust optimization in the presence of uncertainty: A generic approach, Computer and System Sciences, 94. (2018), 135-166.
[16] Z. Li, R. Ding, C. A. Floudas, A comparative theoretical and computational study on Robust counterpart optimization: I. Robust linear optimization and Robust mixed Integer linear optimization, Industrial & Engineering Chemistry Research,50(18), (2011), 10567-10603.
[17] A. L. Soyester, Convert programming with set-inclusive constraint and applications to inexact linear programming, Operations Research, 21(5), (1973), 1154-1157.
[18] A. Ben-Tal, A. Nemirovski, Robust convex optimization, Mathematics of Operations Research,23(4),(1998),769-805.
[19] A. Ben-Tal, A. Nemirovski, Robust convex optimization, Mathematics of Operations Research,23(4),(1998),769-805.
[20] D. Bertsimas, M. Sim, Robust discrete optimization and network flows, Mathematical Programing, 98 (1-3), (2003), 49-71.
[21] D. Bertismas, M. Sim, the price of robustness, Operations Research, 52(1) , (2004) , 35-53.
[22] L. El-Ghaoui, F. Oustry. H. Lebret. Robust solution to uncertain semidefinite programs, On Optimization, 9(1), (1998), 33-52.
[23] A. Beck, A. Ben-Tal-, Duality in robust optimization primal worst equals dual best, Operations Research, 37(1), (2009), 1-6.
[24] V. Jeyakumar, G. Y. Li, Robust duality for fractional programming problems with constrains-wise data uncertainly, Optimization Theory and Application, 151, (2001), 292-303.
[25] V. Jeyakumar, G. Y. Li, S. Srisatkunaragah, Strong duality for robust minimax fractional programming problems, European Journal of Operations Research, Elsevier, 228(2), (2013), 331-336.
[26] X. K. Sun, Y. Chai, On robust duality for fractional programming with uncertainty data, Positive, 18(1), (2013), 9-28.
[27] P. Peykani, E. Mohammadi, M. Rostamy-Malkhalifeh, M. S. Pishvaee, A novel two-phase robust portfolio selection and optimization approach under uncertainty: A case study of Tehran stock exchange, PloS ONE, 15(10), (2020), 1-43.
[28] P. Peykani, E. Mohammadi, R. Farzipoor saen, S. J. Sajadi, M. Rostamy-Malkhalifeh, Data envelopment analysis and robust optimization: A review, Expert Systems, 37(4), (2020), 1-45.
[29] P. Peykani, F. Sadat Seyed Esmaeili, F. Hosseinzadeh Lotfi, Estimating most productive scale size in DEA under uncertainty, The 11th Conference on Data Envelopment Analysis, (2019).
[30] M. Ganji, M. Saraj, Solving Multi Objective Linear Fractional Programming Problem Under Uncertainty via Robust Optimization Approach, Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 115–125, 2019.