Classical and Bayesian inference based on progressive type-II hybrid censored data from the Poisson-Exponential distribution
Subject Areas :
Statistics
masoumeh mohammadi monfared
1
,
Mohammad Hassan Behzadi
2
*
,
reza arabi belaghi
3
1 - Department of Statistics, Science and Research branch, Islamic Azad University, Tehran, Iran;
b
2 - Department of Statistics, Faculty of Basic Sciences, Islamic Azad University, Department of Research Sciences, Tehran, Iran
3 - Department of Statistics, Faculty of Mathematical Sciences, Tabriz University, Tabriz, Iran
Received: 2020-07-15
Accepted : 2020-12-12
Published : 2022-08-23
Keywords:
الگوریتم EM,
براورد بیز,
تقریب لیندلی,
شبیه سازی مونت کارلو,
الگوریتم SEM,
Abstract :
In this paper, the problem of estimating unknown parameters is investigated when lifetime data following Poisson-exponential distribution under classical and Bayesian frameworks based on progressively type-II hybrid censored data. We compute point and associated interval estimates under classical and Bayesian approaches. For point estimates in the problem of estimation, we compute maximum likelihood estimators of model using Expectation-Maximization (EM) and Stochastic Expectation-Maximization (SEM) algorithms under classical approach, these algorithms are easily implemented. We compute Bayes estimates with the help of Lindley and importance sampling technique under informative and non-informative priors using different loss functions namely squared error, LINEX as well as general entropy in Bayesian framework. The associated interval estimates are obtained using the Fisher information matrix and Chen and Shao method respectively under classical and Bayesian approaches. We analysis real data set, and conduct Monte Carlo simulation study for the comparison of various proposed methods. Finally, we present a conclusion.
References:
Banerjee, A. and Kundu, D. (2008). Inference based on Type-II hybrid censored data from a Weibull distribution. IEEE Transactions on Reliability 57: 369-378.
Kundu, D. and Pradhan, B. (2009). Estimating the parameters of the generalized exponential distribution in presence of hybrid censoring. Communications in Statistics-Theory and Methods 38: 2030–2041.
Kundu, D. and Howlader, H. (2010). Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data. Computational Statistics and Data Analysis 54: 1547–1558.
Singh, S., Belaghi, R. A. and Asl, M. N. (2019). Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring. International Journal of System Assurance and Management.
فرنوش رحمان، حاجبی مهتاب، (1395). برآورد نیمه پارامتری کالاهای استراتژیک (قیمت نفت اوپک(. پژوهش های نوین در ریاضی، دوره 2، شماره 8، 78-67.
Basu, A. P. and Klein, J. P. (1982). Some recent results in competing risks theory. Lecture Notes-Monograph Series, 2, 216–229.
Cancho, V. G., Louzada-Neto, F., and Barriga, G. D. (2011). The poisson-exponential lifetime distribution. Computational Statistics & Data Analysis 55(1): 677–686.
8. Epstein, B. (1954). Estimation truncated life-tests in the exponential case. Ann. Math. Stat. 25(3), 555–564.
Childs, A., Chandrasekhar, B., Balakrishnan, N., Kundu, D. (2003) Estimation exact likelihood inference based on type-I and type-II hybrid censored samples from the exponential distribution. Ann. Inst. Stat. Math. 55(2), 319–330
Draper, N., Guttman, T. (1987) Estimation Bayesian analysis of hybrid life-test with exponential failure times. Ann. Inst. Stat. Math. 39, 219–255 .
Gupta, R.D., Kundu, D. (1998). Estimation Hybrid censoring schemes with exponential failure distribution. Commun. Stat. Theory Methods 27(12), 3065–3083 .
Jeong, H.S., Park, J.I., Yum, B.J. (1996) Development of (r; T) hybrid sampling plans for exponential lifetime distributions. J. Appl. Stat. 23, 601–607
Fairbanks, K., Madasan, R., Dykstra, R. (1982). Estimation confdence interval for an exponential parameter from hybrid life-tes. J. Am. Stat. Assoc. 77, 137–140 .
Kundu, D., Joarder, A. (2006) Analysis of type-II progressively hybrid censored data. Comput. Stat. Data Anal. 50(10), 2509–2528
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (methodological): 1–38.
Pradhan, B. and Kundu, D. (2009). On progressively censored generalized exponential distribution. Test 18(3): 497–515.
Diebolt, J., Celeux, G. (1993) .Asymptotic properties of a stochastic EM algorithm for estimating mixing proportions. Stoch. Models 9(4), 599–613.
Tregouet, D.A., Escolano, S., Tiret, L., Mallet, A., Golmard, J.L. (2004). A new algorithm for haplotype-based association analysis: the stochastic-EM algorithm. Ann. Hum. Genet. 68(2), 165–177 .
Arabi Belaghi, R., Valizadeh Gamchi, F., Bevrani, H., Gurunlu Alma, O. 2016 Estimation on Burr type III by progressive censoring using the EM and SEM algorithms. In: 13th Iranian Statistical Conference, Shahid Bahonar University of Kerman, Iran 24–26.
Louzada-Neto, F., Cancho, V. G. and Barriga, G. D. (2011). The poisson-exponential distribution: a bayesian approach. Journal of Applied Statistics 38(6): 1239–1248.
Singh, S. K., Singh, U. and Kumar, M. (2016). Bayesian estimation for poisson-exponential model under progressive type-ii censoring data with binomial removal and its application to ovarian cancer data. Communications in Statistics-Simulation and Computation 45(9): 3457–3475.
Lindley, D. V. (1980). Approximate bayesian methods. Trabajos de Estadi’ stica y de Investigacio’n Operativa 31(1): 223–245.
Chen, M.-H. and Shao, Q.-M. (1999). Monte carlo estimation of bayesian credible and hpd intervals. Journal of Computational and Graphical Statistics 8(1): 69–92.
Singh, S. and Tripathi, Y. M. (2016). Bayesian estimation and prediction for a hybrid censored lognormal distribution. IEEE Transactions on Reliability 65(2): 782–795.
Pepi, J. W. (1994). Failsafe design of an all bk-7 glass aircraft window, SPIE Proc pp. 431-443.
Kumar, M., Kumar, S., Singh, S. and Singh, U. (2016). Reliability estimation for PoissonExponential model under progressive type-II censoring data with binomial removal data. Statistica 76(1): 3-26.
Jahanshahlooa, Gh-R. Zahedi-Sereshtb, M. (2015). Utilizing Monte Carlo Method for Ranking Extreme Efficient Units in Data Envelopment Analysis. Journal of New Researches in Mathematics 1(1):23-40.