Determining the Russell Technical Efficiency of measure in the Presence of Flexible Factors based on slack variables
Subject Areas : StatisticsMajid Sedighi Hassan Kiyadeh 1 , Saber Saati Mohtadi 2 , Sohrab Kordrostami 3
1 - Department of Applied Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
2 - Department of Mathematics, North Tehran Branch, Islamic Azad University, Tehran, Iran.Iran.
3 - Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
Keywords: شاخصهای انعطافپذیر, اندازهگیری راسل, اندازهی کارآیی مبتنی بر متغیرهای کمکی (SBM), مساله برنامهریزی صفر-یک, تحلیل پوششی دادهها,
Abstract :
The role of some factors is not completely clear as an input or an output in many real applications of Data Envelopment Analysis (DEA). In other words, some Decision Making Units (DMUs) can use a factor as an input while it may play an output role in other DMUs. This type of factors is called flexible factors. In this paper, a model is proposed to develop models of flexible factors type in the DEA model. This model, at the same time, minimizes the inputs contraction factor and maximizes the outputs expansion factor in the Russell efficiency measure, in presence of flexible factors. The proposed measure in objective function is linear. In the other words, the relation between the factors is suggested as an additive function. In fact, the proposed model, in contrast the Russell measure is not nonlinear. By an illustrated example, the proposed model is compared with the existing models.
]1[ جهانشاهلو، غ.، حسینزادهلطفی، ف.، نیکومرام،ه. (1387). تحلیل پوششی دادهها و کاربردهای آن، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران.
]7[ کرد رستمی، س.، امیرتیموری، ع.، (1385). راهبرد محاسباتی اندازهی کارآیی تکنیکی راسل، مجله ریاضیات کاربردی واحد لاهیجان، سال سوم، شماره 8.
[2] Charnes, A. Cooper, W.W. (1985). Preface to Topics in Data Envelopment Analysis. Annals of Operations Research, 2, 59-94.
[3] Pastor, J.T. Ruiz, J.L. Sirvent, I. (1999). An enhanced DEA Russell graph efficiency measure. European Journal of Operational Research, 115, 596–607.
[4] Portela, M. Castro, P. E. Thanassoulis, E. (2003). Finding closest targets in non-oriented DEA models: The case of convex and non-convex technologies. Journal of Productivity Analysis 19,251–269.
[5] Sueyoshi, T. Sekitani, K. (2007). Computational Strategy for Russel Measure in DEA Second-Order Cone Programming. European Jurnal of Operational search 180, 441-452.
[6] Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130,498–509.
[8] Sedighi, M.H.K. Saati, S. Kordrostami, S. (2019). Improvement of models for determination of flexible factor type in data envelopment analysis, Measurement, doi: https:// doi.org /10.1016/j. measurement. 01.042
[9] Amirteimoori, A. Emrouznejad, A. Khoshandam, L. (2013). Classifying flexible measures in data envelopment analysis: A slack-based measure, Measurement No 46, 4100-4107.
[10] Cooper, W.W. Seiford, L.M. Tone, K. (2007). Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, Springer USA.
[11] Charnes, A. Cooper, W.W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9, 67–88.
[12] Cook, W.D. Chai, D. Doyle, J. Green, R.H. (1998). Hierarchies and groups in DEA. Journal of Productivity Analysis, 10, 177–198.
[13] Cook, W.D. Green, R.H. (2005). Evaluating power plant efficiency: A hierarchical model. Computers and Operations Research, 32, 813–823.
[14] Cook, W.D. Zhu, J. (2006). Classifying inputs and outputs in data envelopment analysis. European Journal of Operational Research, 180(2), 692–699.
[15] Beasley, J. (1995). Determining teachin and research efficiencies. Journal of the Operational Research Society, 46, 441–452.
[16] Toloo, M. (2009). Classifying inputs and outputs in DEA, European journal of operational research, 198, 358-360
[17] Amirteimoori, A. Emrouznejad, A. (2011). Flexible measures in production process: A DEA-based approach. RAIRO-Operations Research, 45(1), 63–74.
[18] Khodakarami, M., Shabani, A. Farzipoor Saen, R., Azadi, M. )2015(. Developing distinctive two-stage data envelopment analysis models: an application in evaluating the sustainability of supply chain management. Measurement, 70, 62–74.
[19] Azizi, H and R Farzipoor Saen (2015). A new approach for considering dual-role factor in supplier selection problem: DEA approach with efficient and inefficient frontiers. Production and Operations Management (in persian), 6(2), 129–144.
[20] Shabani, A and R Farzipoor Saen (2016). Developing imprecise dual-role hybrid measure of efficiency for international market selection using ternary variable. International Journal of Industrial and Systems Engineering, 22(3), 305–331.
[21] Toloo M. and Barat M. (2015). On considering dual-role factor in supplier selection problem, Mathematical Methods of Operations Research 82(1): 107-122.
[22] Toloo, M. Keshavarz, E. Hatami , A. (2018). Dual-role factors for imprecise data envelopment analysis, Omega 77 15-31.
[23] Bian, Y., Liang, N., Xu, H. (2015). Efficiency evaluation of Chinese regional industrial systems with undesirable factors using a two-stage slacks-based measure approach. Journal of Cleaner Production, 87, 348–356.
[24] Mahdiloo, M, A Noorizadeh and R Farzipoor Saen. (2014). Benchmarking suppliers’ performance when some factors play the role of both inputs and outputs: A new development to the slacks-based measure of efficiency. Benchmarking: An International Journal, 21(5), 792–813.
[25] Lozano, S. (2016). Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector. OMEGA, 60, 73–84.
[26] Salahi, M. Toloo, M. Hesabirad, Z. (2018). Robust Russell and Enhanced Russell Measures in DEA, Journal of the Operational Research Society, https://doi.org/10.1080/01605682, 1489353.
[27] Wei, G., & Wang, J. (2017). A comparative study of robust efficiency analysis and Data Envelopment Analysis with imprecise data. Expert Systems with Applications, 81, 28–38.
[28] Aldamak, A. Zolfaghari, S. (2017). Review of efficiency ranking methods in data envelopment analysis. In Measurement 106: 161-172.
[29] Hajiagha, S. H. S., Mahdiraji, H. A., Tavana, M., Hashemi, S. (2018). A novel common set of weights method for multi-period efficiency measurement using mean-variance criteria. In Measurement 129: 569-581.
[30] Hajiagha, S. H. Mahdiraji, M. Tavana, (2019). A new bi-level data envelopment analysis model for efficiency measurement and target setting. In Measurement 147: 106877.
[31] Kordrostami, S. Amirteimoori, A. Noveiri, M. (2019). Inputs and outputs classification in integervalued data envelopment analysis. In Measurement 139: 317-325.
[32] Boďa, M. (2019). Classifying flexible measures in data envelopment analysis: a slacks-based measure - a comment. In Measurement volume 150, January 2020,107045.