Fixed point results for Ʇ_Hθ- contractive mappings in orthogonal metric spaces
Subject Areas : Statistics
1 - Department of Mathematics, Farhangian University, Iran
Keywords: نگاشتهای Ʇ_Hθ-انقباض, فضای متریک متعامد, نقطه ثابت,
Abstract :
The main purpose of this research is to extend some fixed point results in orthogonal metric spaces. For this purpose, first, we investigate new mappings in this spaces. We introduce the new notions of functions. Then by using it, we define contractive mappings and then we establish and prove some fixed point theorems for such mappings in orthogonal metric spaces. Then by utilizing examples of the function we deduce some new consequences for these fixed point theorems. Also in this research paper we will give applications. As first application, we will show that many fixed point results in metric spaces endowed with a graph G can be deduced easily from fixed point theorems in orthogonal metric spaces. As another application, we will show that many fixed point results in partially ordered metric spaces can be deduced easily from fixed point theorems in orthogonal metric spaces. Indeed, in this paper in addition to extend some fixed point results in orthogonal metric spaces, we will show that our obtained results unify many fixed point results.
]1[ پاکنظر، محدثه (1396). درباره نگاشتهای مییر-کییلر. سیستمهای مختلط و غیرخطی، دوره 1، شماره 1، صص 29 تا 46.
[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application auxéquations integrals, Fundamenta Mathematicae, 3 (1922) 133-181.
[3] F.E. Browder, A new generalization of the Shauder fixed point theorem, Mathematische Annalen, 174 (1967) 285-390.
[4] F.E. Browder, The fixed point theory on multivalued mappings in topological vector spaces, Mathematische Annalen, 177 (1968) 283-301.
[5] P. Chaipunya, C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed-Point Theorems for Multivalued Mappings in Modular Metric Spaces, Abstract and Applied Analysis, vol. 2012, Article ID 503504, 14 pages.
[6] E.H. Connell, Properties of fixed point spaces, Proceedings of the American Mathematical Society, 10 (6) (1959) 974-979.
[7] B.C. Dhage, Generalized metric space and mapping with fixed point, Bulletin of Calcutta Mathematical Society, 84 (1992) 329-336.
[8] K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, Proceedings of the National Academy of Sciences of the United States of America, 38 (1952) 121-126.
[9] C.J. Himmelberg, Fixed points of compact multifunctions, Journal of Mathematical Analysis and Applications, 38 (1972) 205-207.
[10] S.K. Chatterjea, Fixed point theorems, Computers Rendus De L Academia Bulgare Des Sciences, 25 (1972) 727- 730.
[11] L. Ciric, A generalization of Banach’s contraction principle, Proceedings of the American Mathematical Society, 45 (1974) 267-273.
[12] M. Edelstein, on fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962) 74-79.
[13] B. Fisher, Four mappings with a common fixed point, Journal of University of Kuwait Science, 8 (1981) 131-139.
[14] G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich, Canadian Mathematical Bulletin, 1 (6) (1973) 201-206.
[15] N. Hussain, M. A. Kutbi, S. Khaleghizadeh, P. Salimi, Discussions on Recent Results for α−ψ-Contractive Mappings, Abstract and Applied Analysis, Volume 2014, Article ID 456482, 13 pages.
[16] T. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis. 65 (2006) 1379-1393.
[17] Y.J. Cho, B.E. Rhoades, R. Saadati, B. Samet, W. Shatanawi, Nonlinear coupled
fixed point theorems in ordered generalized metric spaces with integral type, Fixed Point Theory and Applications, Volume 2012, 2012:8.
[18] I.L. Glicksberg, A further generalization of the Kakutani fixed theorem with application to Nash equilibrium points, Proceedings of the American Mathematical Society, 3 (1952) 170-174.
[19] K.S. Ha, Y.J. Cho, A. White, Strictly convex and strictly 2-convex 2-normed spaces, Mathematica Japonica, 33 (3) (1988) 375-384.
[20] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, Journal of Inequalities and Applications, 2014, 2014:38.
[21] A.C.M. Ran and M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proceedings of the American Mathematical Society, 132 (2004), 1435–1443.
[22] J.J. Nieto, R. Rodrıguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239.
[23] R.P. Agarwal, M.A. El-Gebeily, D. O’Regan, Generalized contractions in par tially ordered metric spaces, Applicable Analysis, 87 (2008) 109–116.
[24] V. Berinde and F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory and Application, 2012:105 (2012), doi: 10.1186 /1687-1812-2012-105.
[25] M. Cherichi, B. Samet, fixed point theorems on ordered gauge spaces with applications to nonlinear integral equations, Fixed Point Theory and Applications, 2012:13 (2012).
[26] L.Ciric, R.P. Agarwal and B. Samet, Mixed monotone-generalized contractions
in partially ordered probabilistic metric spaces, Fixed Point Theory and Applications, 2011:56 (2011).
[27] Z. Golubovic, Z, Kadelburg and S. Radenovi´c, Common fixed points of ordered g-quasicontractions and weak contractions in ordered metric spaces, Fixed Point Theory and Applications, 2012:20 (2012).
[28] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction
in partially ordered metric spaces, Nonlinear Analysis, 72 (2010), 4508- 4517.
[29] M. Eshaghi, M. Ramezani, M.D.L. Sen, Y.J. Cho, On orthogonal sets and Banach’s fxed point theorem, Fixed point Theory, 18(2017), No. 2, 569-578, DOI 10.24193/FPT-RO.2017.2.45.
[30] H. Baghani, M. Eshaghi Gordji, M. Ramezani, Orthogonal sets: Their relation to the axiom choice and a generalized fixed point theorem, Journal of Fixed Point Theory and Applications, (2016), DOI 10.1007/s11784-016-0297-9.
[31] M. Ramezani, Orthogonal metric space and convex contractions, International Journal of Nonlinear Analysis and Applications, 6 (2015) No. 2, 127-132.
[32] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proceedings of the American Mathematical Society, 136 (2008) 1359-1373.
[33] R. Johnsonbaugh, Discrete Mathematics (Fourth Edition), Upper Saddle River. NJ: Prentics Hal1. intemationa1, (1997) 257-280.