Concurrent vector fields on Finsler spaces
Subject Areas : StatisticsS.M. Zamanzadeh 1 , B. Najafi 2 * , M. Toomanian 3
1 - Department of Mathematics, Islamic Azad University, Karaj Branch, Karaj. Iran
2 - Department of Mathematics and Computer Sciences Amirkabir University, Tehran. Iran
3 - Department of Mathematics, Islamic Azad University, Karaj Branch, Karaj. Iran
Keywords: متر لاندزبرگ, میدان های برداری متقارب, انحنای بروالد ایزو تروپیک,
Abstract :
In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.
[1] K. Yano, Sur le parallélisme et la concourance dans l'espace de Riemann, Proc. Imp. Acad. Tokyo, 19, (1943), 189-197.
[2] F. Brickell and K. Yano, Concurrent vector fields and Minkowski structures, Kodai Math. SEM. REP, 26 (1974), 22-28.
[3] O. Constantinescu, Myller configurations in Finsler spaces. Applications to the study of subspaces and of torse forming vector fields, J. Korean Math. Soc., (45), Vol. 5, (2008), 1443-1482.
[4] S. C. Rastogi and A. K. Dwivedi, On the existence of concurrent vector fields in a Finsler space, Tensor (N.S.) 65 (2004), no.1, 48-54.
[5] U. P. Singh, On concurrent vector fields in Finsler spaces, Univ. Nac. Tucumán Rev. Ser. A28 (1978), no.1-2, 141-146.
[6] M. Matsumoto and K. Eguchi, Finsler spaces admiting a concurrent vector field, Tensor (N.S.) 28 (1974), no.1, 239-249.
[7] K. C. Sarangi and A. Goswami, On concurrent vector fields in special Finsler spaces, Journal of International Academy of Physical Sciences, 7 (2003), 83-89.
[8] A. Tayebi, On the class of generalized Landsberg manifolds, Periodica Math Hungarica, 72(2016), 29–36.
[9] A. Tayebi and M. Barzegari, Generalized Berwald spaces with (α,β)-metrics, Indagationes Mathematicae, 27 (2016), 670-683.
[10] A. Tayebi and H. Sadeghi, Generalized P-reducible (α,β)-metrics with vanishing S-curvature, Ann. Polon. Math. 114(1) (2015), 67-79.
[11] A. Tayebi and H. Sadeghi, On generalized Douglas-Weyl (α,β)-metrics, Acta Mathematica Sinica, English Series, 31(10) (2015), 1611-1620.
[12] M. Kitayama, Finsler spaces admiting a parallel vector field, Balkan Journal of Geoemtry and its Applications, Vol. 3, (1998), 29-36.
[13] Z. Shen, Differential Geometry of Sprays and Finsler Spaces, Kluwer Academic Publisher, The Netherlands, (2001).