Improving the performance of the minimum rotational image difference function method using the CMA-ES algorithm in optimal orientation
Subject Areas : Statisticsseyed vahid Lakziyan 1 , Moosarreza Shamsyeh Zahedi 2 , aghileh heydari 3 , Majid Anjidani 4
1 - PhD Student, Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
2 - Assistant Professor, Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
3 - Professor, Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
4 - Assistant Professor, Department of Computer, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
Keywords: پردازش تصویر, ناوبری بهینه, تابع اختلاف تصویر چرخشی(rIDF), تصاویر پانوراما,
Abstract :
Orientation is a vital ability for humans and animals. Noticing the way insects orient in nature can be used to improve the orientation skills of robots. The main question of this research can be stated as follows. What kind of information do insects perceive of natural scenes, using their visual ability, that enables them to orient and to find the direction of movement? For orientation, the minimum of rotational image difference function (MrIDF) method can be applied using panoramic image processing [1]. In MrIDF method, even with full shift, if the distance between the location of the current view image and the reference image increases, the return path cannot be correctly identified due to the increase in the difference between the two images. In this paper, we present a solution that can be used to identify the path and return angle in places far from the reference location. We also improve the efficiency the rotIDF minimum method by using the covariance matrix adaptation evolutionary strategy (CMA-ES) optimization algorithm. We show the efficiency of this method via a navigation example. The results show that finding the direction of movement through the proposed algorithm is done with sufficient accuracy and in much less time.
[1] W, Zeil J. Depth, contrast and view-based homing in outdoor scenes. Biological Cybernetics.2007; 96:219-531.
[2] M. Giurfa and E. A. Capaldi, ‘‘Vectors, routes and maps: new discoveries about navigation in insects,’’ Trends Neurosci. 22, 237-242 (1999).
[3] Cartwright BA, Collett TS. Landmark learning in bees-experiments and models. J Comp Physiol. 1983;151:521-543.
[4] Wehner R, F. Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera: Formicidae).Cell Mol Life Sci. 1979; 35: 1569-1571
[5] Zeil J, Hofmann MI, Chahl JS. Catchment areas of panoramic snapshots in outdoor scenes. J Opt SocAm A.2003; 20: 450-469.
[6] Baddeley B, Graham P, Husbands P, Philippides A (2012) A Model of Ant Route Navigation Driven by Scene Familiarity. PLoS Comput Biol 8(1): e1002336. Doi:10.1371/journal.pcbi.1002336
[7] Zahedi MS, Zeil J (2018) Fractal dimension and the navigational information provided by natural scenes. PloS ONE 13(5): e0196227. https://doi.org/10.1371/journal.pone.0196227.
[8] Pardalos P. and Romeijn E., eds. (2002) Handbook of global optimization, Vol. 2, Kluwer Acad. Publ., Dordrecht.
[9] Beyer HG, Schwefel HP. Evolution strategies - a comprehensive introduction. Nat. Comput. 2002; 1(1):3–52. doi: 10.1023/a:1015059928466. [CrossRef] [Google Scholar]
[10] Holland JH. Genetic algorithms. Sci. Am. 1992;267(1):66-73. doi:10.1038/ scientificamerican 0792-66. [CrossRef] [Google Scholar]
[11] Roubos J, van Straten G, van Boxtel A. An evolutionary strategy for fed-batch bioreactor optimization; concepts and performance. J. Biotechnol. 1999; 67(2–3):173–187. doi: 10.1016/s0168-1656(98) 00174-6. [CrossRef] [Google Scholar]
[12] Zeugmann T, et al. Particle swarm optimization. In: Sammut C, Webb GI, et al., editors. Encyclopedia of Machine Learning. Heidelberg: Springer; 2011. pp. 760–766. [Google Scholar]
[13] Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 1997; 11(4): 341–359. doi: 10.1023/A:1008202821328. [CrossRef] [Google Scholar]
[14] N. Hansen, S. D. , and P. Koumoutsakos. Reducing the time complexityof the derandomized evolution strategy with covariance matrix adaptation. Evolutionary Computation, 11(1):1-18, 2003.
[15] Anjidani M, Motlagh MJ, Fathy M, Ahmadabadi M. A novel online gait optimization approach for biped robots with point-feet. ESAIM: COCV, 25 (2019) 81. Published online:19 December 2019. DOI: 10.1051/cocv/2017034
[16] Akimoto Y, Hansen N. CMA-ES and Advanced Adaptation Mechanisms, GECCO '21: Proceedings of the Genetic andEvolutionaryComputation Conference Companion. July 2021. Pages 636–663. https://doi.org/10.1145/3449726.3462748
[17] Nikolaus Hansen. 2016. The CMA Evolution Strategy: A Tutorial. ArXiv e-prints (April 2016). arXiv: cs.LG/ 1604.00772
[18] N. Hansen. The CMA evolution strategy: a comparing review. In J. A. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary computation. Advances on estimation of distribution algorithms, pages 75-102. Springer, 2006.
[19] W, Grixa I, Mair E, Narendra A, Zeil J. Three-dimensional models of natural environments and the mapping of navigational information, Journal of Comparative Physiology A.2015; 201: 563±584.
[20] Gonzalez, R. C. , and Woods, R. E. (2002), Digital Image Processing (2nd ed.), Prentice-Hall, Inc., ISBN0-201-18075-8