Statistical Micromechanical Analysis of the Effects of Fiber Random Distribution on the Mechanical Properties of Fibrous Composites
Subject Areas : journal of New MaterialsM. J. Mahmoodi 1 , M. K. Hassanzadeh Aghdam 2
1 - دانشآموخته کارشناسی ارشد، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران
2 - استادیار، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی تهران.
Keywords: Fibrous Composites, Micromechanics, Random Distribution, Hypothesis Testing,
Abstract :
In this paper, a 3D micromechanical model is presented to study the effect of randomly distributed fiber within the matrix on the mechanical characterizations of unidirectional fiber reinforced composites. The Representative Volume Element (RVE) of the model consists of r×c unit cells in which fibers are distributed randomly within the matrix cells. The presented model is general and can be used to extract the stiffness properties of a fibrous composite subjected to thermal and mechanical, normal and shear loading and also to investigate the initiation of matrix plastic deformation. Different statistical distribution models including normal, uniform and beta distribution are used to study the fiber arrangement. The obtained results for the elastic properties in which fiber distributed at random show good agreement with both experimental data and available models. Statistical analysis of dependency of stiffness and strength properties with fiber array within the matrix is carried out by applying hypothesis testing based on the central limit theorem in each normal, uniform and beta distribution. According to the obtained numerical results, the necessary interpretation is done in each case. Numerical results of hypothesis testing show that fiber distribution has no effect on the stiffness properties of a fiber composite, while the strength properties of the composites are highly affected by the fiber arrangement.
Refrences
1- Z. Hashin, and A. Shtrikman, “A Variational Approach to the theory of Elastic Behavior of Multiphase Materials”, Journal of the Mechanics and Physics of Solids, Vol. 11, pp. 127-140, 1963.
2- A. V. Hershey, “The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals”, Journal of the Application of Mechanics, Vol. 21, pp. 239, 1954.
3- B. Budiansky, “On the Elastic Moduli of Some Heterogeneous Materials”, Journal of the Mechanics and Physics of Solids, Vol. 13, pp. 223, 1965.
4- M. Uemura, H. Iyama and Y. Yamaguchi, “Thermal Residual Stress in Filament Wound Carbon-Fiber-Reinforced Composites”, Journal of Thermal Stress, Vol. 2, pp. 393-412, 1979.
5- J. Aboudi, “A Continuum Theory for Fiber Reinforced Elastic Visco-Plastic Composites”, International Journal of Engineering Science, Vol. 20, pp. 605-620, 1982.
6- R. P. Nimmer, “Fiber-Matrix Interface Effects in the Presence of Thermally Induced Residual Stress”, Journal of Composites Technology and Research, Vol. 12, pp. 65-75, 1990.
7- M. M. Aghdam, D. J. Smith and M. J. Pavier, “Finite Element Micromechanical Modelling of Yield and Collapse Behaviour of Metal Matrix Composites”, Journal of the Mechanics and Physics of Solids, Vol. 48, pp. 499-528, 2000.
8- I. Ahmadi and M. M. Aghdam, “A truly Generalized Plane Strain Meshless Method for Combined Normal and Shear Loading of Fibrous Composites”, Engineering Analysis with Boundary Elements, Vol. 35, pp. 395-403, 2011.
9- M. Bayat and M. M. Aghdam, “A Micromechanics-Based Analysis of Effects of Square and Hexagonal Fiber Arrays in Fibrous Composites Using DQEM”, European Journal of Mechanics A/Solids, Vol. 32, pp. 32-40, 2012.
10- ا. ح. اسلامی، م. م. مشکسار، س. م. زبرجد، بررسی اثرات ذرات دی سیلیساید مولیبدن(MoSi2) بر رفتار مکانیکی و الکتریکی ماده مرکب زمینه مس تولید شده به روش اتصال نوردی تجمعی (ARB)، مواد نوین/ دوره 4 شماره 13 صص 57-68، پاییز 1392.
11- م. ک. حسنزاده اقدم، م. ج. محمودی، تحلیل میکرومکانیکی خرابی ماده مرکب زمینه تیتانیومی با الیاف کوتاه تحت اثر بارگذاری محوری مرکب، مهندسی مکانیک مدرس/ دوره 13 شماره 4 صص 86-97، تابستان 1392.
12- M. J. Mahmoodi, M. M. Aghdam and M. Shakeri, “Micromechanical Modeling of Interface Damage of Metal Matrix Composites Subjected to off-Axis Loading”, Materials & Design, Vol. 31, pp. 829-836, 2010.
13- D. D. Robertson and S. Mall, “Micromechanical Relations for Fiber-Reinforced Composites Using the Free Transverse Shear Approach”, Journal of Composites Technology and Reserch, Vol. 151, pp. 181-192, 1993.
14- IMI Titanium Ltd. Brochure, High temperature alloys, 1993.
15- J. Aboudi, “Closed Form Constitutive Equations for Metal Matrix Composites”, International Journal of Engineering Science, Vol. 25, pp. 1229-1240, 1987.
16- M. P. Thomas and M. R. Winstone, “Effect of the Angle between Fibers and Tensile Axis on Static Properties of Unidirectional Reinforced Titanium MMC”, Proceedings of the European Conference on Composite Materials, (ECCM-8), 4, Naples- Italy, pp. 147-154, 1998.
17- Z. Hashin, “On Elastic behaviour of fiber Reinforced Materials of Arbitrary Transverse Phase Geometry”, Journal of the Mechanics and Physics of Solids, Vol. 13, pp. 119-134, 1965.
18- D. F. Adams and D. A. Crane, “Combined loading micro micromechanical analysis of a unidirectional composite”, Composites, Vol. 15, pp 181-191, 1984.
19- آر. ای. والپون، مقدمهای بر احتمالات و آمار کاربردی، ترجمه م.ب.ق آریانژاد، م. ذهبیون، دانشگاه علم و صنعت ایران، 1387.
20- M. J. Mahmoodi and M. M. Aghdam, “Damage Analysis of Fiber Reinforced Ti-Alloy Subjected to Multi-Axial Loading—A Micromechanical Approach”, Materials Science and Engineering A, Vol. 528, pp. 7983-7990, 2011.